

WSAT-XSC 200H-360L

ЧИЛЛЕР С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ КОНДЕНСАТОРА МОЩНОСТЬЮ ОТ 510 ДО 960 кВт

SPINCHILLER представляет собой новейшее достижение в эволюции чиллеров. Разработан специально с целью повышения эффективности при частичных нагрузках. Чиллеры серии SPINCHILLER обладают пониженнымоп потреблением электроэнергии - при нормальных условиях эксплуатации - по сравнению с другими чиллерами аналогичной холодильной мощности.

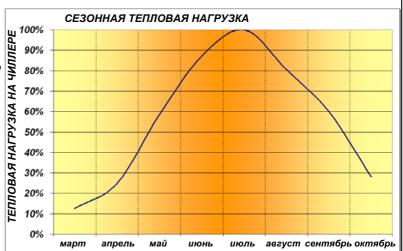
WSAT-XSC 200	H - 360L (R-410A)
Размер	Охлаждение [кВт]
200H	511
220H	558
230H	609
240H	647
270J	692
300L	748
315L	797
330L	860
345L	910
360L	965

Серия SPINCHILLER является поворотной точкой в развитии подобных холодильных машин. Они включают в себя все новейшие технологии, существующие в настоящее время, и характеризуются: ЭФФЕКТИВНОСТЬЮ

благодаря особенностям конструкции, SPINCHILLER гарантирует высокую энергоэффективность, особенно при работе в условиях частичных нагрузок;

СПОСОБНОСТЬЮ САМОАДАПТАЦИИ

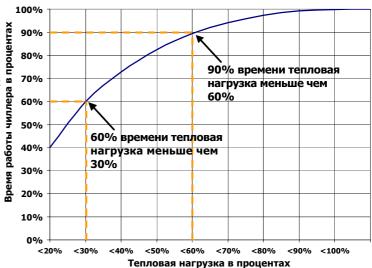
благодаря использованию новейшей системы управления, позволяющей адаптировать холодильную машину к необходимой нагрузке, система оптимизирует энергопотребление, снижает шум и продлевает срок службы отдельных компонентов; НАДЕЖНОСТЬЮ СПИРАЛЬНЫХ КОМПРЕССОРОВ

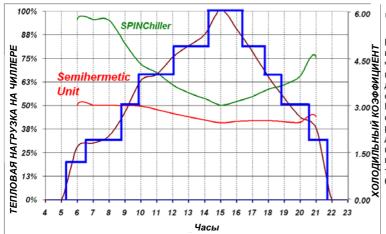

компрессоры и новейшая система управления обеспечивают высокий уровень надежности недостижимый для других чиллеров аналогичной холодильной мощности.

Компания Clivet принимает участие в Сертификационной программе EUROVENT. Все продукты, прошедшие сертификацию, перечислены в Директории EUROVENT и на сайте www.eurovent-certification.com. Программа сертификации EUROVENT покрывает диапазон мощностей чиллеров от 600 до 1500 кВт.

Комфорт-это право человека. Забота об охране окружающей среды-это обязанность человека.

SPINCHILLER как новый концептуальный продукт, разработан специально для работы с увеличением эффективности при уменьшении тепловой нагрузки, с возможностью работы с максимальной нагрузкой когда это необходимо. Из-за значительных дневных и сезонных перемен в нагрузке, чиллеры должны работать в течении длительного периода времени под неполной нагрузкой. Холодильные машины SPINCHILLER всегда сочетают в себе условия максимального комфорта и ультра-высокой эффективности на протяжении всей жизни большинства систем холодоснабжени, что способствует значительному энергосбережению. Данное обстоятельство четко выражает политику CLIVET: предлагать фундаментальные и конкретные решения, чтобы содействовать увеличению комфорта для человека и сбережению окружающей среды. В качестве примера приведен сезонный график тепловой нагрузки многофункционального здания (магазины. офисы, апартаменты), находящегося в Милане

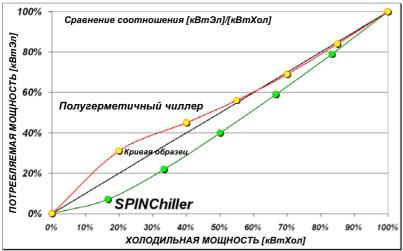



HECKOЛЬКО ВЫСОКОЭФФЕКТИВНЫХ КОМПРЕССОРОВ SCROLL В ОДНОМ ХОЛОДИЛЬНОМ КОНТУРЕ

Ключевым аспектом в проектировании SPINCHILLER является намерение оснастить один холодильный контур группой SCROLL компрессоров, вместо обычного применения небольшого количества больших полугерметичных компрессоров. Данное обстоятельство позволяет чиллеру прекрасно адаптироваться к нагрузкам в системе, путем включения/выключения необходимого количества компрессоров. Система управления, используемая в чиллерах SPINCHILLER, позволяет оптимизировать частоту включения и сбалансировать рабочие циклы компрессоров для достижения максимальной эффективности.

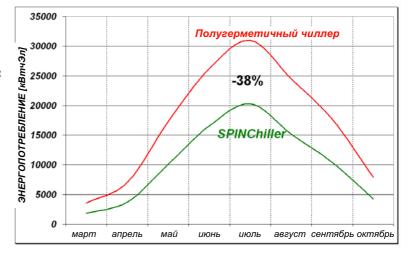
ВЫСОКАЯ ЭФФЕКТИВНОСТЬ ПРИ ЧАСТИЧНЫХ НАГРУЗКАХ

Чиллер является частью системы кондиционирования и подбирается из условий полной нагрузки. Хотя на практике максимальная нагрузка составляет очень маленький процент от всего времени функционирования, в то время как работа в условиях частичной нагрузки занимает основную часть времени. Тесты смоделированные на основе различных реальных условий в зданиях показывают, что в среднем системы холодоснабжения работают 90% времени с нагрузкой не более 60%. Согласно данным исследованиям рабочая эффективность при частичных нагрузках является ключевым моментом при выборе чиллера.



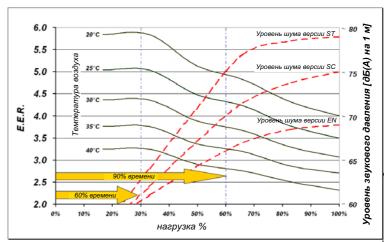
ЧУВСТВИТЕЛЬНОСТЬ К ИЗМЕНЕНИЮ НАГРУЗКИ

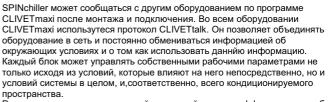
Высокая эффективность SCROLL компрессоров и специальные конструктивные решения подчеркивают термодинамическую эффективность чиллеров SPINCHILLER. График сбоку иллюстрирует черезвычайную плавность, с которой мощность адаптируется к нагрузке и показывает как, даже когда не все компрессоры включены, эффективность SPINCHILLER остается выше, чем у обычного чиллера. ЭФФЕКТИВНОСТЬ УДВАИВАЕТСЯ КОГДА ЧИЛЛЕР РАБОТАЕТ ПРИ 50% НАГРУЗКИ. Усовершенствованная система управления оптимизирует рабочий цикл и последовательность ротации компрессоров, тем самым продляя их рабочий ресурс. Для достижения максимальной эффективности, система управления запускает компрессоры согласно наиболее благоприятным соотношениям между повержностями теплообмена и нагрузкам таким образом, чтобы температуры конденсации и испарения находились на наиболее благоприятных уровнях.


ВЫСОКАЯ ЭФФЕКТИВНОСТЬ БЛАГОДАРЯ ОПТИМАЛЬНОМУ ИСПОЛЬЗОВАНИЮ ПОВЕРХНОСТЕЙ

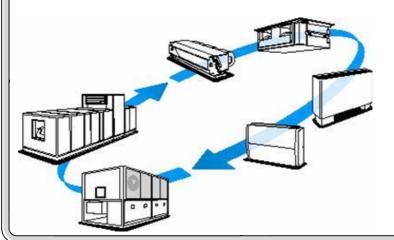
У традиционного чиллера при работе с частичными нагрузками, потребление электроэнергии выше теоретической величины (пропорциональной холодопроизводительности) за счет потерь на трение и дисперсию, которые снижают эффективность чиллера. В противоположность этому холодильные машины SPINCHILLER, обеспечивающие более высокую холодопроизводительность в процентном соотношении к потребляемой мощности, благодаря тому, что могут работать с большими поверхностями теплообмена, когда отсутствует максимальная нагрузка. Это обстоятельтсво гарантирует получение высоких значений EER, выше чем у других чиллеров аналогичной мощности.

НИЗКИЕ ЭКСПЛУАТАЦИОННЫЕ РАСХОДЫ


Благодаря вышеупомянутым преимуществам, чиллер серии SPINCHILLER достигает гораздо более высокого уровня эффективности, чем обычный чиллер в течение всего времени работы. Если сравнивать потребление электроэнергии SPINCHILLER и обычным чиллером той жепроизводительности, работающим в той же системе, SPINCHILLER обеспечивает экономию до 38% за сезон. Эти цифры, а также высокая надежность, свойственная этому оборудованию, делают SPINCHILLER непревзойденными в смысле окупаемостии бесперебойной работы.


БАЛАНС НАГРУЗКИ И УРОВНЯ ШУМА

Электронное устройство управления конденсацией, которое входит в стандартную комплектацию агрегатов блоков SPINCHILLER, предназначено для автоматического управления скоростью вентилятора при уменьшении тепловой нагрузки. Принимая во внимание, что вентиляторы являются главным источником шума в чиллере, это устройство приносит большую выгоду,особенно при работе в ночное время, когда потребность в системе меньше, а восприимчивость к шуму максимальная.


Из графика видно, что в 90%рабочего времени уровень звукового давления примерно на 6-8 дБ (A) ниже, чем при работе с максимальной нагрузкой.

ИНТЕГРАЦИЯ В СИСТЕМУ УПРАВЛЕНИЯ

Результатом является чрезвычайно высокий уровень эффективности работы системы, достигаемый благодаря полной интеграции компонентов в системе.

СПЕЦИФИКАЦИЯ СТАНДАРТНОГО БЛОКА

Scroll-компрессор заправлен маслом и имеет: защиту от тепловой перегрузки защиту по высокой температуре нагнетаемого газа, резиновые антивибрационные опоры, звукоизолирующий и погодоустойчивый корпус. При выключенном компрессоре нагреватель картера включается автоматически для предотвращения разбавления масла хладагентом

Оцинкованный окрашенный каркас с внешними панелями из крашенного алюминия обеспечивает максимальную устойчивость к погодным условиям. Прочное основание из швеллеров равномерно распределяет вес блока. Подъемные отверстия в несущей раме упрощают процесс транспортировки и установки блока.

ИСПАРИТЕЛЬ

Теплообменник прямого испарения кожухотрубного типа с четырмя независимыми контурами для каждого компрессора. Трубки легко вынимаються для беспрепятственного обслуживания. Корпус теплообменника выполнен из углеродистой стали. Высокоэффективные медные трубки с канавками, для увеличения поверхности теплообмена, механически закрепленные внутри корпуса и предназначены для работы с экологически читыми хладагентами. Снабжены защитным дифференциальным реле давления на стороне воды, противообледенительными нагревателями и теплоизоляцией с закрытыми порами для предотвращеняи образования конденсата на наружной поверхности теплообменника.

КОНДЕНСАТОР

Медные трубки теплообменника расположены в шахматном порядке и имеют алюминиевое оребрение. Теплообменник имеет дополнительный встроенный контур переохлаждения, что обеспечивает оптимальное регулирование мощности терморегулирующим вентилем. По желанию возможно различное исполнение, см. раздел аксессуары

ВЕНТИЛЯТОР

Осевые вентиляторы с серповидными лопастями "Winglets" установлень прямо на валу трехфазного электрического двигателя с внешним ротором и встроенной защитой отперегрева, имеющим класс защиты ІР 54. Двигатель вентилятора расположен в специальном кожухе аэродинамической формы для увеличения эффективности и снижения уровня шума; вентилятор имеет защитные решетки.

ХОЛОДИЛЬНЫЙ КОНТУР

Блоки имеют по два независимых контура, включающих:

- фильтр-осушитель со сменным картриджем;
- смотровое стекло с индикацией жидкости;
- электронный терморасширительный вентиль;
- реле высокого давления;
- реле низкого давления;
- предохранительный клапан высокого давления;
- предохранительный клапан низкого давления;
- запорный клапан на нагнетании компрессора;

ЭЛЕКТРИЧЕСКАЯ ПАНЕЛЬ

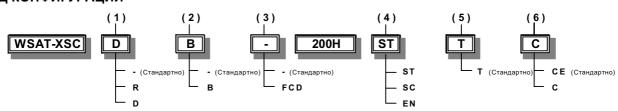
Силовая часть включает:

- главный силовой включатель с устройством блокировки двери;
- изолирующий трансформатор для вспомогательного электропитания;

- автомат защиты компрессора;
- автомат защиты вентилятора;
- контактор управления компрессором;
- контакторы управления вентилятором;
- фазовый регулятор скорости вращения вентиляторов;

Секция управления содержит:

- пропорционально-интегральный регулятор температуры воды;
- защиту от замерзания;
- защиту компрессора от перегрузки и таймер;
- систему самодиагностики с индикацией кодов неисправностей;
- индикацию времени наработки компрессора;
- контакты для дистанционного Вкл/Выкл блока;
- систему автоматического ротации включения компрессоров;
- реле для дистанционной сигнализации «общей» ошибки;
- вход команды предела значения (ограничение электрической мощности по внешнему сигналу 0-10V или 4-20 мA);
- пред-аварийный сигнал «по высокому давлению хладагента» или при «угрозе замерзания воды»;
- просмотр «уставок», кодов неисправностей и индекса параметров; кнопки ON/OFF и сброс ошибки;
- пульт управления с графическим дисплеем;
- электронное управления для системы Elfo Control (опционально)


АКСЕССУАРЫ

- теплообменник конденсатора медь/медь;
- теплообменник конденсатора медь/алюминий с акриловым покрытием;
- стальной сетчатый фильтр для установки на входе теплообменника; в случае, если фильтр не установлен в водяном контуре, Clivet не несет никакой
- ответственности и гарантия на оборудование автоматически прекращается; - защитная решетка теплообменника и компрессора;
- запорный клапан на стороне всасывания копмрессора;
- манометры высокого и низкого давления;
- HydroPack (см. стр. 8);
- алюминиевый кожух для гидравлической группы;
- противообледенительные электро-нагреватели для гидравлической группы;
- конденсаторы для увеличения коэффициента мощности (cos.fi>0,9);
- сухие контакты состояния компрессоров;
- корректировка уставки температуры воды по сигналу 4-20 mA или 0-10 B;
- корректировка уставки температуры воды по датчику наружной температуры;
- корректировка уставки температуры воды по энтальпии;
- устройство записи рабочих и аварийных параметров;
- пружинные антивибрационные опоры;
- ECOBreeze (см. стр. 7);
- работа в режиме ведущий ведомый;
- устройство плавного пуска;
- Последовательный адаптер CAN/LON WORKS;
- Последовательный адаптер CAN/MODBUS.

ТЕСТИРОВАНИЕ

Все блоки тестируются на заводе в специально созданных условиях, перед отправкой. Перед подтверждением, проверяется наличие жидкости в всех контурах, для гарантии рабочих пределов установленных производителем для различных компонентов.

КОД КОНФИГУРАЦИИ

(1) РЕГЕНЕРАЦИЯ ТЕПЛА

Полная регенерация тепла (R)

Используется дополнительный пластинчатый теплообменник позволяющий регенерировать 100% тепловой нагрузки конденсатора для получения горячей воды.

Дополнительный теплообменник снабжен дифференциальным датчиком перепада давления на стороне воды, проивообледенительным нагревателем для предотвращения образования льда.

Частичная регенерация тепла (D)

Используется дополнительный пластинчатый теплообменник позволяющий регенерировать до 20% тепловой нагрузки конденсатора для получения горячей воды.

Дополнительный теплообменник снабжен проивообледенительным нагревателем для предотвращения образования льда.

(2) НИЗКОТЕМПЕРАТУРНОЕ ИСПОЛНЕНИЕ

Для охлаждения жидкости до низких температур (В)

Данная версия позволяет охлаждать жидкость (раствор гликоля) до температур от +4 до -8°C

Возможны два варианта:

- только низкотемпературная работа;
- для работы по двум уставкам.

(При возникновении вопросовсвязывайтесь с производителем.)

(3) "СВОБОДНОЕ ОХЛАЖДЕНИЕ (FREE COOLING)"

Прямое свободное охлаждение (FCD)

Данная версия обеспечивает охлаждение окружающим воздухом в тех случаях, когда температура окружающего воздуха ниже температуры воды

(4) АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ

Стандартная акустическая конфигурация (ST)

смотри раздел "СПЕЦИФИКАЦИЯ СТАНДАРТНОГО БЛОКА"

Акустическая конфигурация с шумоизоляцией компрессоров (SC) блоки в данной конфигурации имеют звукоизолирующие кожухи на компрессорах

Особомалошумная акустическая конфигурация (EN) в этой конфигурации выполняется дополнительная звукоизоляция компрессорного отделения, снижена скорость вращения вентиляторов

(5) ЭНЕРГОЭФФЕКТИВНОСТЬ

Энергоэффективность для умеренного климата (Т) стандартно

(6) СЕРТИФИКАЦИЯ ТЕПЛООБМЕННИКОВ

Сертификация теплообменников C = CLIVET (Внутренние тесты)(CLV) Сертификация теплообменников СЕ = PED (Европейские тесты)(PED)

v		
7	5	1
h	П	
	ä	۹
=	Ξ	d
6	7	ì
ú	ű	
Ľ		i
ij	Ξ	
7	3	1
b	1	á
b		3
ñ	3	
6	5	1
١		ı
J	P	į
	B	1

ОПЦИИ	ПОЯСНЕНИЕ	200H	220H	230H	240H	270J	300L	315L	330L	345L	360L
FCD + ST	Прямое свободное охлаждение. Стандартная акустическая конфигурация.	8	8	8	8	8	8	8	8	8	8
FCD + SC	Прямое свободное охлаждение. Акустическая конфигурация с шумоизоляцией компрессоров.	\	>	>	>	\	>	>	>	>	\
FCD + EN	Прямое свободное охлаждение. Особомалошумная акустическая конфигурация.	8	⊗	⊗	8	8	8	8	8	8	8
FCD + B	Прямое свободное охлаждение. Работа при низких температурах жидкости.	8	⊗	⊗	⊗	8	8	8	8	8	8
FCD + D	Прямое свободное охлаждение. Частичная регенерация тепла.	\	\	>	>	\	>	>	\	>	\
FCD + R	Прямое свободное охлаждение. Полная регенерация тепла.	8	⊗	⊗	⊗	8	8	8	8	8	8
FCD + CCCA	Прямое свободное охлаждение. Теплообменник конденсатора медь/алюминий с акриловым покрытием.	8	8	⊗	8	8	8	8	8	8	8
FCD + CCCC	Прямое свободное охлаждение. Теплообменник конденсатора медь/медь.	8	8	8	8	8	8	8	8	8	8
FCD + ALHM	Прямое свободное охлаждение. Алюминиевый кожух для гидравлической группы.	8	⊗	⊗	8	8	8	8	8	8	8
FCD + 2PM	Прямое свободное охлаждение. Hydropack с 2-мя насосами.	8	⊗	⊗	⊗	8	8	8	8	>	\
FCD + 2PM + D	Прямое свободное охлаждение. Hydropack с 2-мя насосами. Частичная регенерация тепла.	8	⊗	⊗	8	8	8	8	8	>	>
D + R	Частичная регенерация тепла. Полная регенерация тепла.	8	8	8	8	8	8	8	8	8	8
D + 2PM	Частичная регенерация тепла. Hydropack с 2-мя насосами.	>	>	>	>	>	>	>	>	>	>
R + 2PM	Полная регенерация тепла. Hydropack с 2-мя насосами.	8	⊗	⊗	8	8	8	8	8	8	8
2PM + PUA2	Hydropack с 2-мя насосами. 2-х полюсные насосы типа А.	>	>	>	>	>	>	>	8	8	8
2PM + PUB2	Hydropack с 2-мя насосами + 1 резервный. 2-х полюсные насосы типа А.	>	>	>	>	>	>	>	8	8	8
2PM + PUC2	Hydropack с 3-мя насосами. 2-х полюсные насосы типа А.	8	⊗	>	>	>	>	>	>	>	>
2PM + PUD2	Hydropack с 3-мя насосами + 1 резервный, установлен отдельно. 2-х полюсные насосы типа А.	8	>	>	>	>	>	>	>	>	>
2PM + PUM4	Hydropack с 2-мя насосами. 2-х полюсные насосы типа В.	\	\	>	>	\	>	>	>	8	8
2PM + PUN4	Hydropack с 2-мя насосами + 1 резервный. 2-х полюсные насосы типа В.	\	\	>	>	\	>	\	\	8	8
2PM + PUO4	Hydropack с 3-мя насосами. 2-х полюсные насосы типа В.	\	\	\	\	\	>	\	\	\	\
2PM + PUP4	Hydropack с 3-мя насосами + 1 резервный, установлен отдельно. 2-х полюсные насосы типа В.	\	\	\	\	\	>	\	✓	\	\
PFCP + STSTR	Конденсаторы коррестировки электрической мощности (cosfi>0.9). Устройство плавного пуска.	8	8	8	8	\otimes	8	8	8	8	8

ШУМОВЫЕ ХАРАКТЕРИСТИКИ

Акустическая конфигурация: Стандартная (ST)

Pa		Урс	Октор				,		Уровень звукового давления	Уровень звуковой мощности
Размер			Октав	ныи д	иапазо	он (Гц)			давлопия	МОЩНОСТИ
70	63	125	250	500	1000	2000	4000	8000	дБ(А)	дБ(А)
200H	93	86	90	96	92	96	89	84	80	100
220H	98	87	90	100	94	92	86	82	80	100
230H	98	87 90		100	94	93	87	82	80	100
240H	99	88	91	101	95	93	87	83	81	101
270J	99	89	92	101	95	94	88	84	81	101
300L	100	89	92	102	96	94	88	84	81	102
315L	100	90	93	102	96	95	89	84	81	102
330L	100	90	93	102	96	95	89	85	82	102
345L	101			103	97	96	90	85	82	103
360L	101	91	94	103	97	96	90	85	82	103

Измерения произведены согласно ISO 3744 в соответствии с сертификатом EUROVENT 8/1. Уровни шума чиллеров приведены для условий полной нагрузки и обычных тестовых

условий. Уровни шума замерялись на расстоянии 1 м от поверхности чиллера, работающего

Уровни шума замерялись на расстоянии 1 м от поверхности чиллера, работающего в свободном пространстве
Данные соответствуют следующим условиям:
температура воды в испарителе = 12/7°C
температура наружнего воздуха 35°C
Уровни шума версии EN верны в пределах рабочего диапазона для данного акустического исполнения; для более высоких температур наружнего воздуха возможно использовать данные для версии SC в рабочих пределах данной версии.

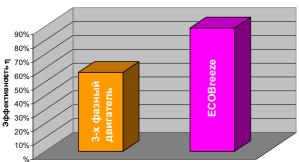
Акустическая конфигурация: шумоизоляция компрессоров (SC)

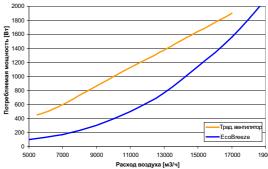
Размер		Урс	овни з Октав			цности эн (Гц)	,		Уровень звукового давления	Уровень звуковой мощности
ő	63	125	250	500	1000	2000	4000	8000	дБ(А)	дБ(А)
200H	87	82	90	94	85	89	83	79	75	95
220H	92	83	90	98	87	86	80	77	76	96
230H	92	83	90	98	87	86	80	77	76	96
240H	93	83	91	98	88	86	81	78	77	97
270J	94	85	92	99	89	87	82	79	77	98
300L	95	86	93	100	90	88	83	80	78	99
315L	95	86	94	101	90	88	83	80	78	99
330L	95	86	94	101	90	89	83	81	78	99
345L	96			101	91	89	84	81	79	100
360L	96	87	95	102	91	90	84	81	79	100

Акустическая конфигурация: Особомалошумная (EN)

Размер		Уро		Уровень звукового давления	Уровень звуковой мощности					
0	63	125	250	500	1000	2000	4000	8000	дБ(А)	дБ(А)
200H	90	81	82	88	80	86	78	77	70	90
220H	95	95 81 81			83	82	75	74	71	91
230H	95	81	81	92	83	82	75	74	71	91
240H	95	81	81	92	83	82	75	74	71	91
270J	95	82	82	92	83	83	75	75	71	91
300L	96	83	83	94	84	84	77	76	72	93
315L	97	84	84	94	85	84	77	77	72	93
330L	97	84	84	94	85	84	77	77	73	93
345L	98	85	85	95	86	85	78	78	73	94
360L	98	85	85	95	86	85	78	78	73	94

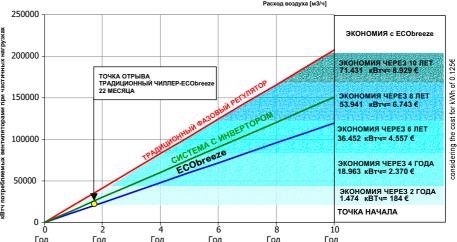
Аксессуары: ECOBreeze




В ряду оборудования с воздушным охлаждением конденсатора Clivet представляет новую технологию, основанную на применении вентиляторов с бесщеточным приводом и электронным управлением, характеризуемую высокой производительностью и обеспечивающую точное регулирование скоростей вентилятора.

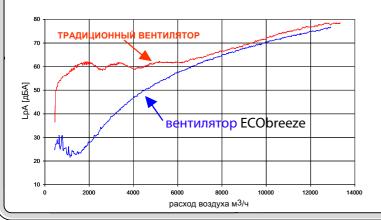
Опция ECOBreeze предусматривает использование специальных вентиляторов с бесщеточными электродвигателями. Данная технология основана на использовании ротора с постоянными магнитами, соединенного посредством электронного переключателя магнитного поля со статором, установленным непосредственно на моторе. Отличительной особенностью является электронный переключатель, который позволяет точно и эффективно управлять скоростью вращения вентилятора и таким образом, его производительностью. Работу этого устройства контролирует система общего управления блока, обеспечивая таким образом полное взаимодействие с другими компонентами охлаждения; Это позволяет достичь высочайшей эффективности работы оборудования. Кроме того, благодаря непосредственному соединению вентилятора с системой управления гарантируется абсолютная сбалансированность в работе пары регулятор/вентилятор в отличие от традиционного оборудования.

Наконец, в критических условиях работы, например при повышении температуры окружающего воздуха выше установленных пределов, перед отключением от сети и/или включением аварийной сигнализации, устройство управления будет реагировать на изменение условий и задействует скорость вентилятора выше номинального значения, обеспечивая таким образом дополнительную мощность равную примерно 15% от установленного значения. Таким образом, возможно обеспечить производство охлажденной воды, в то время как в традиционном оборудовании включается аварийная сигнализация.


Высокоэффективный электродвигатель гарантирует снижение энергопотребления в любых условиях работы.

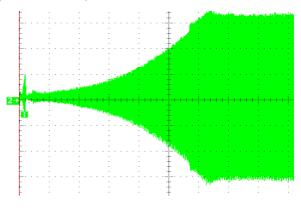
Конечные результаты подтверждают, что по сравнению с традиционными трехфазными индукционными моторами, также имеющими регулировку частоты и/или напряжения, внутренние потери на железе tуменьшаются на 60%, а на меди на 40%, в то время как потребление электроэнергии примерно в 2 раза ниже, чем с традиционным регулятором (инвертер, регулятор фаз). Экономия электроэнергии, и соответственно, затрат, чрезвычайно высока, и первоначальные капиталовложения окупаются всего за несколько

Начиная с этого момента и далее снижение эксплуатационных затрат приносит ощутимую выгоду пользователю



оу WSAT-XSC 200H (с 8-ю вентипяторами) уста не - лля работы 2.000 ч/гол

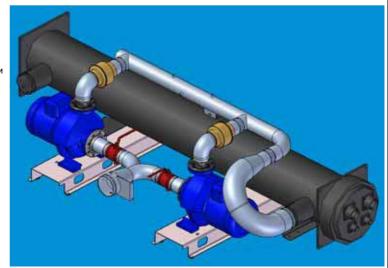
			т рафии ос	orbererbjer in	31310P) 11 0 311 31	20 20011 (0 0 10	bonnin opamin,	, jeranobnominom	y Billisiano Ass	1 pase 15: 2:000	лод.	
WSAT-XSC		200H	220H	230H	240H	270J	300L	315L	330L	345L	360L	
ОКУПАЕМОСТЬ	Месяцев		22									
Экономия через	кВтч	71,431	89,267	89,267	89,267	107,132	107,132	116,064	124,997	133,929	142,862	
10 лет	€ (0.125)	8,929	11,158	11,158	11,158	13,391	13,391	14,508	15,625	16,741	17,858	
Частота использов.	ч/год		2'000									


При работе вентилятора на минимальной скорости, уровень шума уменьшается.

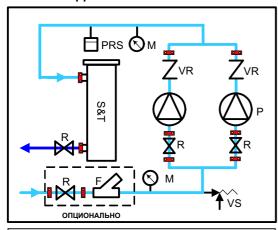
Кроме того, достигается общее снижение уровня шума, благодаря как регулированию скорости вращения, которая устанавливается на наиболее оптимальноезначение, сообразуясь с условиями работы, так и новой технологии, внедренной в управлении, которая не создает характерных шумов и вибрации во время вращения.

Пуск плавный, без резких скачков потребления мощности.

Уменьшение силы тока при пуске (схема внизу) благодаря типологии управления, а также отсутствию контактных щеток при подаче электропитания на ротор, значительно снижает износ компонентов в течение всего срока службы. По результатам исследований, срок службы вентилятора можно рассматривать как практически неограниченный (свыше 80000 часов)


Аксессуары: Hydropack

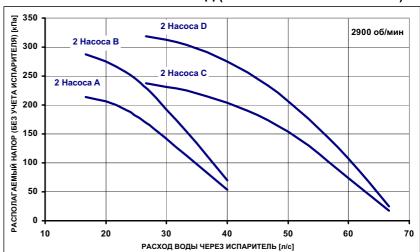
Новая концепция насосных станций и резервирования насосов.


Благодаря оснащению холодильных машин аксессуаром Hydropack, достигается необходимое соотношение расход/напор в различных версиях в зависимости от мощности блока.

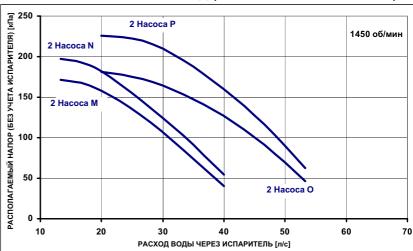
Для версий ST/SC доступны насосы с 2-х полюсными двигателеми (2950 об/мин), а также для версий ST/SC/EN насосы с 4-х полюсными двигателеми (1450 об/мин). Насосы с 4-х полюсным двигателем гарантируют низкий уровень шума, но в тоже время малую величину свободного напора. Все основные компоненты (включая предустановленные патрубки для подсоединения к системе) снабжаются легко-разъемным соединением в отпичие от традиционных фланцевых соединений, для быстрого и легкого подключения холодильной машины к системе.

- Они могут легко сниматься, облегчая техническое обслуживание и замену.
- Затраты времени сокращаются на 90%
- Не требуется участия специального персонала.
- Значительно упрощается извлечение отдельных узлов.
- Уменьшается масса, так как при одинаковых размерах труб соединения весят в два раза меньше, чем фланцевые.
- Используются стандартные компоненты, всегда имеющиеся в продаже.

СХЕМА СОЕДИНЕНИЯ НАСОСНОЙ ГРУППЫ


Гидрогруппа из нескольких насосов включает в себя:

- R=запорные клапаны
- F=стальной сетчатый фильтр (опция),
- М=манометры,
- VS=предохранительный клапан (6 бар),
- Р=высокоэффективные электрические насосы в одном корпусе с одним ротором,
- VR=обратные клапана,
- PRS= предохранительный датчик давления (отключает насосы при отсутствии воды),
- PHE=испаритель,
- комплект состоящий из двух глухих заглушек, необходимых при извлечении насоса для обслуживания.


ЭЛЕКТРИЧЕСКИЕ ДАННЫЕ ДЛЯ ОДНОГО НАСОСА

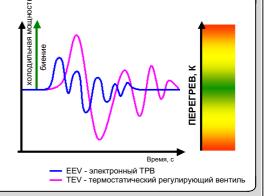
	Hydropack	(
Тип	[кВт]	[A]
Α	8.0	17.0
В	11.0	23.0
С	15.0	31.0
D	22.0	44.0
М	8.0	17.4
N	11.0	24.8
0	11.0	24.8
Р	15.0	31.6

ГРАФИК НАПОР - РАСХОД (2-Х ПОЛЮСНЫЕ НАСОСЫ)

ГРАФИК НАПОР - РАСХОД (4-Х ПОЛЮСНЫЕ НАСОСЫ)

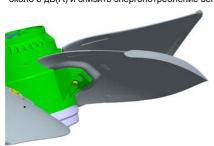
Внимание: падение давления на испарителе необходимо вычесть из величины располагаемого напора с диаграммы, чтобы получить величину располагаемого напора на систему.

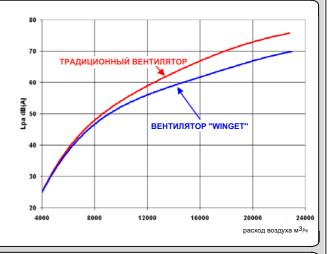
Электронный ТРВ установлен стандартно


Эффективность в стандартном комплекте поставки благодаря применению электронного ТРВ. Этот элемент оптимизирует перегрев при любых условиях нагрузки и обладает преймуществами:

- Быстрое и точное реагирование благодаря микропроцессорному управлению с PID регулированием и приводу со ступенчатым управлением.
- Высокая энергоэффективность при любых условиях, благодаря сокращению переходного режима в величинах амплитуды и продолжительности, согласно изменению нагрузки.
- Расширенный рабочий диапазон чиллера при минимальной нагрузке и минимальной температуре воздуха на входе в конденсатор
- Улучшенные условия работы компрессора, благодаря снижению температуры нагнетания газа, предотвращению возврата житкости и исключенибю недостаточной смазки компрессора.
- Легкая настройка чиллера, даже для специальных нужд, благодаря гибкости ТРВ и параметрам управления.
- Экономичное использование хладагента, так как для заправки его необходимо меньше.
- Повышение надежности работы холодильного контура, благодаря упрощению его компонентов, контролю максимального рабочего давления (МОР) и индивидуальной аварийным сигналом каждого компонента.

Переходный режим и влияние на перегрев


Нестабильность величины перегрева, является следствием изменения нагрузки. Электронный TPB при помощи PID регулятора, позволяет быстро снижать биение величины перегрева к нулю. Данная функция позволяет быстро стабилизировать работу системы в пределах наиболее подходящей величины перегрева.



Новое поколение вентиляторов

SPINchiller оснащен новыми осевыми вентиляторами, спроектированными в лучших Европейских лабораториях в сотрудничестве с производителями вентиляторов. В результате исследований появились инновационные вентиляторы "Winglets", с аэродинамическим профилем на концах лопастей.

Создание подобных лопастей, позволило добиться снижения шума на величину около 6 дБ(А) и снизить энергопотребление вентиляторов на 10%

Сезонная эффективность=ESEER

ESEER: Гарантирует такие величины рабочих характеристик, которые позволяют планировать потребление энергии и, соответственно,

The ESEER = Европейский Сезонный Индекс Энергоэффективности, по сравнению с обычным EER, расчитывается как комбинация различных рабочих условий, которые были недавно введены Eurovent/CEN, с целью продемонстрировать эффективность чиллеров в условиях отличающихся от заданных (соответствующих середине сезона)

		Услов	вия					
	Время	Нагрузка	Воздух	Вода				
а	3	100	35	12 / 7	-	EERa =	2.76	x 0.03+
b	33	75	30	10.8 / 7	-	EERb =	3.64	x 0.33+
С	41	50	25	9.5 / 7		EERc =	4.62	x 0.41+
d	23	25	20	8.3 / 7	>	EERd =	5.49	x 0.23+
							ESEER =	4.44

Пример расчета для чиллера WSAT-XSC 200H SC.

- a,b,c,d, = условия частичной нагрузки и температуры воздуха используемые для расчета ESEER.
- -Время % = промежуток времени, на протяжении которого, чиллер работает при данных в таблице условиях (используете сумму времени).
- -Нагрузка % = изменение нагрузки на чиллер (от полной номинальной мощности).
- -Воздух = температура воздуха на входе в конденсатор.
- -Вода = температура воды на входе и выходе испарителя.
- -EER a,b,c,d = EER величины расчитанные при условии частичных нагрузок

Акустическая конфигурация: Стандартная (ST) / Шумоизоляция компрессоров (SC) ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Размер			200H	220H	230H	240H	270J	300L	315L	330L	345L	360L
ОХЛАЖДЕНИЕ			•	•			•				•	
Холодильная мощность	1	кВт	511	558	609	647	692	748	797	860	910	965
Потребление компрессора		кВт	170	185	201	216	229	250	265	283	300	319
Полная потребляемая мощность	2	кВт	185	204	220	235	251	273	289	310	328	349
Тепловая мощность полной рекуп.	3	кВт	686	749	815	869	927	1005	1069	1151	1218	1293
Тепловая мощность частич. рекуп.	3	кВт	136	149	162	173	184	200	212	229	242	257
EER			2.76	2.73	2.77	2.75	2.75	2.74	2.76	2.78	2.78	2.76
ESEER			4.44	4.39	4.46	4.43	4.51	4.58	4.6	4.64	4.64	4.62
КОМПРЕССОР					•			•	•			
Тип компрессоров			SCROLL									
Количество компрессоров		шт	8	8	8	8	10	12	12	12	12	12
Номинальная мощность (С1)		HP	50	55	55	60	60	75	75	75	75	90
Номинальная мощность (С2)		HP	50	55	55	60	60	75	75	75	90	90
Номинальная мощность (С3)		HP	50	55	60	60	75	75	75	90	90	90
Номинальная мощность (С4)		HP	50	55	60	60	75	75	90	90	90	92
Кол-во ступеней регулирования		Nr	8	8	8	8	10	12	12	12	12	12
Заправка маслом (С1)		Л	10	12	12	11	11	20	20	20	20	17
Заправка маслом (С2)		Л	10	12	12	11	11	20	20	20	17	17
Заправка маслом (С3)		Л	10	12	11	11	20	20	20	17	17	17
Заправка маслом (С4)		Л	10	12	11	11	20	20	17	17	17	17
Кол-во холодильных контуров		шт	4	4	4	4	4	4	4	4	4	4
ИСПАРИТЕЛЬ					•			•	•			
Тип испарителя	4		S&T									
Количество испарителей		шт	1	1	1	1	1	1	1	1	1	1
Расход воды		л/с	24.4	26.7	29.1	30.9	33.1	35.7	38.1	41.1	43.5	46.1
Падение давления		кПа	57	69	55	62	65	76	59	67	58	64
Объем испарителя		л	125	114	222	222	207	207	184	184	225	225
БЛОК ВЕНТИЛЯТОРОВ					•			•	•			
Тип вентиляторов	5		AX									
Количество вентиляторов		Nr	8	10	10	10	12	12	13	14	15	16
Номинальный расход воздуха		л/с	48565	57559	57559	57559	68393	68393	75440	79945	87170	91693
подключение												
Фитинги на трубопроводы			168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1
УРОВЕНИ ШУМА												
Уров. звукового давления (10 м)	6	дБ(А)	68 (63)	68 (64)	68 (64)	69 (65)	69 (65)	69 (66)	70 (66)	70 (67)	70 (67)	71 (67)

⁽¹⁾ Данные приведены для следующих условий:

температура воды в испарителе = 12/7°C

температура окружающего воздуха 35°C (2) В соответствии с EUROVENT, величина Полной потребляемой мощности не включает в себя мощность циркуляционных насосов

- (3) Температура воды в рекуператоре =40/45°C (4) S&T = Кожухотрубный испаритель

- (5) AX = осевой вентилятор (6) Данные в скобках соответствуют конфигурации SC

Акустическая конфигурация: Стандартная (ST) / Шумоизоляция компрессоров (SC)

РАБОЧИЙ ДИАПАЗОН (ОХЛАЖДЕНИЕ)

Размер				220H	230H	240H	270J	300L	315L	330L	345L	360L
НАРУЖНИЙ ТЕПЛООБМЕННИК (КОН	ДЕНСАТО	P)		1		1	1	1		1	1	1
Максим. температура на входе	1	°C	45	45	45	45	45	45	45	45	45	45
Максим. температура на входе	2	°C	48	48	48	48	48	48	48	48	48	48
Миним. температура на входе	3	°C	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
Миним. температура на входе	4	°C	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
Миним. температура на входе	5	°C	2	2	2	2	2	2	2	2	2	2
Миним. температура на входе	6	°C	11	11	11	11	11	11	11	11	11	11
ВНУТРЕННИЙ ТЕПЛООБМЕННИК (И	СПАРИТЕ	ЛЬ)										•
Макс.температура воды на входе		°C	23	23	23	23	23	23	23	23	23	23
Мин.температура воды на выходе	7	°C	5	5	5	5	5	5	5	5	5	5
Мин.температура воды на выходе	8	°C	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8

Данные приведены для следующих условий : температура воды в испарителе = 12/7°C

температура воды в испарителе = 12/7 С
предупреждение: неподвижное состояние воздуха рассматривается как отсутствие воздушных потоков, направленных в сторону блока.Слабый ветер может вызвать прохождение воздуха через теплообменник, что приводит к сокращению рабочего

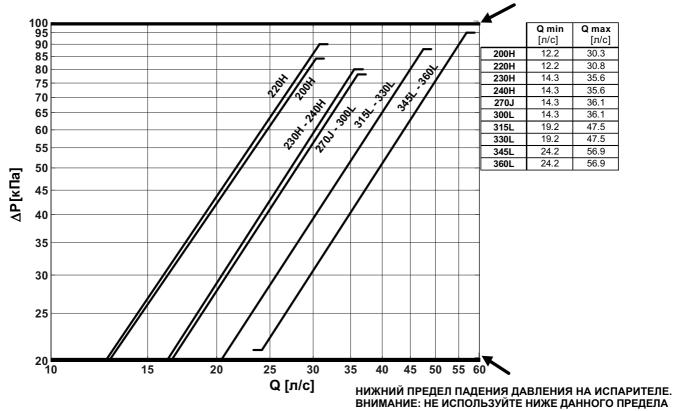
просождение воздуха через тельномомении, это приводит и сохращению ресочето диапазона (см. рабочий диапазон при скорости воздухат 0,5 м/с и 1 м/с). Примечание: в любом случае чиллер не должен подвергаться воздействию температур ниже -10°C при работе, транспортировке или хранении. В НИМАНИЕ В СЛУЧАЕ НАПИЧИЯ СИЛЬНЫХ ВЕТРОВ, НЕОБХОДИМО ИСПОЛЬЗОВАТЬ ВЕТРОЗАЩИТНЫЕ ЭКРАНЫ.

- (1) Максимальная температура воздуха на входе блок при полной нагрузке (2) Максимальная температура воздуха на входе блок с регулированием
- производительности и стандартным ограничительным устройством
- (3) Мин. температура воздуха на входе блок при полной нагрузке и неподвижном воздухе (4) Мин. температура воздуха на входе блок при частичной нагрузке и неподвижном воздухе (5) Мин. температура воздуха на входе блок при частичной нагрузке и скорости ветра 0.5 м/с.
- (6) Мин. температура воздуха на входе блок при частичной нагрузке и скорости ветра 1 м/с. (7) стандартный блок

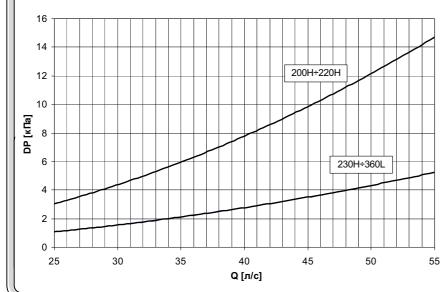
температура окружающего воздуха 35°C (8) В = Низкотемпературный блок температура окружающего воздуха 35°C

смесь вода-этиленгликоль 40%

Акустическая конфигурация: Стандартная (ST) / Электрическая сеть: 400/3/50


ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Размер		200H	220H	230H	240H	270J	300L	315L	330L	345L	360L
F.L.A СИЛА ТОКА ПРИ ПОЛНОЙ НАГРУЗ	МАЛЬН	о допуст	имой в	ПРОЦЕС	СЕ ЭКСПЛ	ІУАТАЦИІ	И				
F.L.A Общий	Α	425	478	492	505	589	665	689	713	737	761
F.L.I ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ ПРИ ПОЛНОЙ НАГРУЗКЕ, МАКСИМАЛЬНО ДОПУСТИМОЙ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ											
F.L.I Общий	кВт	257	281	294	307	344	378	399	420	441	462
М.І.С МАКСИМАЛЬНЫЙ ПУСКОВОЙ ТОК											
М.І.С Величина	Α	702	755	769	782	866	874	966	990	1014	1038


Максимальный дисбаланс фаз 2 % Электрическая сеть: 400/3/50 Γ ц +/-6%

ПАДЕНИЕ ДАВЛЕНИЯ НА ИСПАРИТЕЛЕ: ST СТАНДАРТНЫЙ - SC - EN

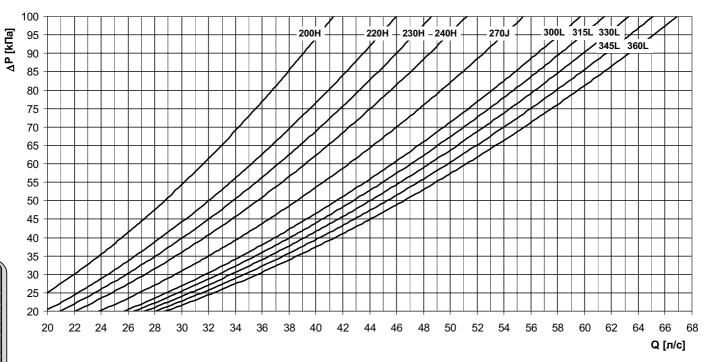
ВЕРХНИЙ ПРЕДЕЛ ПАДЕНИЯ ДАВЛЕНИЯ НА ИСПАРИТЕЛЕ. ВНИМАНИЕ: НЕ ИСПОЛЬЗУЙТЕ ВЫШЕ ДАННОГО ПРЕДЕЛА

водяной фильтр


Падение давления на "водяном фильтре" добавляется к падению давления на испарителе.

Q = расход воды

dP = падение давления



ПАДЕНИЕ ДАВЛЕНИЯ НА ТЕПЛООБМЕННИКЕ ЧАСТИЧНОЙ РЕКУПЕРАЦИИ

Q = РАСХОД ВОДЫ DP = ПАДЕНИЕ ДАВЛЕНИЯ

ПАДЕНИЕ ДАВЛЕНИЯ НА ТЕПЛООБМЕННИКЕ ПОЛНОЙ РЕКУПЕРАЦИИ

Q = РАСХОД ВОДЫ DP = ПАДЕНИЕ ДАВЛЕНИЯ

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ: СТАНДАРТНАЯ (ST) / ШУМОИЗОЛЯЦИЯ КОМПРЕССОРОВ (SC)

ХАРАКТЕРИСТИКИ РЕЖИМА ОХЛАЖДЕНИЯ

					TE	МПЕРАТ	ура во	ЗДУХА Н	А ВХОДІ	Е КОНДЕ	HCATOR	PA (°C)			
Размер	To (°C)	2	:5	3	30	3	12	3	35	4	0	4	2	4	! 5
		kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	537.7	139.8	510.1	153.5	499.0	159.2	482.4	167.8	454.7	182.5	443.6	188.6	426.8	197.8
	6	552.6	141.2	524.8	154.5	513.6	160.0	496.7	168.5	468.3	183.5	456.8	189.7	439.5	199.2
200H	7	567.9	142.6	539.7	155.7	528.3	161.2	511.1	169.7	482.1	184.7	470.3	190.9	452.6	200.5
20011	8	583.5	143.9	554.8	157.2	543.1	162.8	525.6	171.3	496.0	186.2	484.1	192.3	466.1	201.7
	9	599.5	145.1	569.9	159.1	558.1	164.8	540.2	173.4	510.2	187.9	498.2	193.9	480.0	202.8
	10	615.7	146.3	585.3	161.3	573.1	167.2	554.9	175.8	524.6	190.0	512.4	195.6	494.3	203.8
	5	574.4	151.6	546.1	166.6	534.6	172.8	517.4	182.2	488.5	198.2	476.8	204.7	459.2	214.6
	6	599.2	153.1	568.8	168.3	556.7	174.5	538.5	183.8	508.2	199.6	496.1	206.0	477.9	215.7
220H	7	621.1	154.8	589.5	170.0	576.9	176.1	558.0	185.4	526.4	201.1	513.7	207.4	494.8	216.9
22011	8	640.1	156.6	608.1	171.6	595.2	177.7	575.7	186.9	543.0	202.5	529.8	208.8	509.9	218.3
	9	656.3	158.6	624.6	173.3	611.6	179.3	591.9	188.4	558.1	203.9	544.3	210.2	523.3	219.8
	10	669.7	160.6	639.0	174.9	626.2	180.8	606.3	189.8	571.7	205.3	557.2	211.7	535.0	221.5
	5	623.5	165.2	594.2	181.1	582.2	187.5	564.1	197.2	533.2	213.8	520.6	220.5	501.6	230.6
	6	650.4	168.0	619.5	183.3	606.9	189.6	587.7	199.2	555.1	215.5	541.9	222.2	521.7	232.3
230H	7	674.3	170.3	642.0	185.3	628.8	191.5	608.8	200.9	574.7	217.1	560.8	223.8	539.8	233.9
23011	8	695.2	171.9	661.7	187.0	648.1	193.2	627.3	202.6	592.0	218.7	577.6	225.3	555.7	235.3
	9	713.2	172.9	678.7	188.3	664.6	194.6	643.3	204.1	606.9	220.2	592.1	226.7	569.6	236.6
	10	728.2	173.4	692.9	189.4	678.5	195.8	656.6	205.5	619.5	221.6	604.3	228.1	581.4	237.8
	5	661.0	177.4	630.2	194.6	617.7	201.5	598.7	211.9	566.3	229.4	553.2	236.4		
	6	688.5	181.1	657.1	197.4	644.1	204.0	624.4	214.0	590.5	231.1	576.6	238.0		
240H	7	713.7	183.8	681.0	199.6	667.6	206.1	647.0	216.0	611.5	232.9	597.0	239.9		
24011	8	736.5	185.5	702.2	201.3	688.1	207.8	666.5	217.8	629.5	234.9	614.3	241.9		
	9	757.0	186.1	720.5	202.5	705.6	209.2	683.0	219.4	644.4	236.9	628.7	244.1		
	10	775.1	185.7	736.0	203.0	720.2	210.1	696.4	220.9	656.2	239.1	640.0	246.5		
	5	723.4	188.2	686.9	206.2	672.0	213.6	649.4	225.1	610.9	244.9	595.2	253.0	571.4	265.5
	6	748.9	190.4	711.1	208.3	695.7	215.7	672.3	227.0	632.5	246.5	616.3	254.5	591.8	266.8
270J	7	771.2	192.4	732.0	210.2	716.1	217.6	692.0	228.8	651.0	248.2	634.4	256.1	609.2	268.2
2.00	8	790.3	194.1	749.8	212.0	733.3	219.4	708.5	230.6	666.5	249.9	649.4	257.8	623.7	269.8
	9	806.0	195.5	764.3	213.7	747.4	221.1	721.9	232.4	678.8	251.7	661.4	259.6	635.1	271.5
	10	818.5	196.6	775.5	215.1	758.2	222.7	732.1	234.1	688.1	253.5	670.4	261.4	643.7	273.4
	5	787.3	204.6	745.1	224.8	728.0	233.1	702.0	245.9	658.1	267.9	640.3	276.9	613.3	290.8
	6	815.1	207.3	771.2	227.2	753.5	235.5	726.5	248.1	681.0	269.9	662.5	278.9	634.5	292.6
300L	7	838.9	209.7	793.9	229.5	775.7	237.7	747.9	250.2	700.9	271.9	681.7	280.8	652.7	294.5
0002	8	858.8	211.8	813.2	231.5	794.6	239.6	766.2	252.1	717.8	273.8	698.0	282.7	667.9	296.4
	9	874.8	213.7	829.1	233.3	810.3	241.4	781.4	253.9	731.7	275.6	711.3	284.6	680.0	298.3
	10	886.9	215.2	841.6	234.8	822.7	243.0	793.6	255.6	742.7	277.4	721.6	286.4	689.1	300.3
	5	835.1	217.7	793.9	238.1	776.9	246.7	750.7	259.9	705.5	282.9	686.9	292.5	658.4	307.3
	6	862.7	220.0	818.8	240.9	801.0	249.5	774.1	262.5	728.6	284.9	710.2	294.0	682.3	307.8
315L	7	888.7	222.2	843.1	243.3	824.7	251.8	796.9	264.8	750.3	286.7	731.5	295.6	703.1	309.2
0.02	8	913.1	224.4	866.8	245.2	848.0	253.7	819.4	266.6	770.7	288.6	750.8	297.6	720.7	311.2
	9	935.9	226.6	890.1	246.7	870.9	255.1	841.3	268.0	789.7	290.4	768.2	299.7	735.2	313.9
	10	957.2	228.7	912.7	247.8	893.4	256.0	862.8	269.0	807.4	292.2	783.7	302.0	746.6	317.4

kWf = Холодильная мощность, кВт kWe = Потребление компрессора, кВт To = Температура воды на выходе испарителя° C DT = Разность температур на входе и выходе испарителя = 5°C

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ: СТАНДАРТНАЯ (ST) / ШУМОИЗОЛЯЦИЯ КОМПРЕССОРОВ (SC)

ХАРАКТЕРИСТИКИ РЕЖИМА ОХЛАЖДЕНИЯ

					TE	МПЕРАТ	УРА ВО	ЗДУХА Н	А ВХОД	Е КОНДЕ	HCATO	PA (°C)			
Размер	To (°C)	2	.5	3	0	3	2	3	5	4	.0	4	2	4	-5
	, ,	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	895.7	233.8	852.8	255.7	835.0	264.8	807.7	278.8	760.6	303.0	741.1	313.0	711.3	328.4
	6	925.9	236.0	881.1	258.2	862.7	267.3	834.6	281.1	786.4	304.8	766.7	314.4	736.6	329.2
330L	7	954.1	238.4	907.6	260.7	888.6	269.7	859.7	283.4	810.2	306.7	790.0	316.2	759.3	330.5
330L	8	980.2	241.0	932.3	263.0	912.7	272.0	882.9	285.7	831.9	308.8	811.1	318.3	779.4	332.6
	9	1004	243.8	955.1	265.4	935.0	274.2	904.2	287.8	851.4	311.1	829.8	320.7	796.8	335.4
	10	1026	246.8	976.1	267.6	955.5	276.3	923.7	289.8	868.9	313.6	846.2	323.5	811.5	338.8
	5	936.8	246.8	889.9	270.4	871.2	280.0	843.3	294.6	796.9	319.3	778.5	329.4	750.8	344.7
	6	974.2	250.9	927.7	273.7	908.7	283.1	879.9	297.3	830.8	321.5	810.8	331.4	780.4	346.4
345L	7	1006	254.0	958.8	276.4	939.4	285.6	909.6	299.6	858.4	323.6	837.3	333.4	805.2	348.3
343L	8	1032	256.2	983.3	278.6	963.2	287.7	932.5	301.7	879.8	325.6	858.2	335.4	825.2	350.3
	9	1053	257.5	1001	280.1	980.3	289.3	948.6	303.5	895.0	327.6	873.3	337.5	840.5	352.6
	10	1068	257.9	1012	281.0	990.5	290.5	957.9	304.9	904.1	329.6	882.8	339.7	851.0	355.0
	5	990.4	263.2	941.1	288.3	921.6	298.5	892.6	313.9	845.0	339.8	826.1	350.3	798.1	366.1
	6	1030	267.8	981.8	291.9	962.3	301.8	932.5	316.7	881.7	342.1	861.1	352.4	829.6	368.0
360L	7	1064	271.2	1015	294.9	995.3	304.5	964.7	319.2	911.7	344.3	889.9	354.5	856.4	370.0
3001	8	1092	273.6	1042	297.2	1021	306.8	989.3	321.4	934.9	346.5	912.6	356.7	878.5	372.2
	9	1114	274.8	1061	298.7	1039	308.5	1006	323.3	951.3	348.6	929.2	358.8	895.8	374.4
	10	1131	274.9	1072	299.7	1049	309.7	1016	324.9	961.0	350.6	939.7	361.1	908.4	376.8

kWf = Холодильная мощность, кВт kWe = Потребление компрессора, кВт To = Температура воды на выходе испарителя° C DT = Разность температур на входе и выходе испарителя = 5°C

Акустическая конфигурация: Особомалошумная (EN)

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Размер	·····			220H	230H	240H	270J	300L	315L	330L	345L	360L
ОХЛАЖДЕНИЕ				1	1		1	1	1		1	
Холодильная мощность	1	кВт	493	535	575	615	665	721	761	819	862	925
Потребление компрессора		кВт	181	197	214	232	242	267	282	303	318	338
Полная потребляемая мощность	2	кВт	192	210	227	245	258	282	299	320	337	358
Тепловая мощность полной рекуп.	3	кВт	679	737	795	853	913	992	1051	1129	1188	1272
Тепловая мощность частич. рекуп.	3	кВт	135	146	158	169	181	198	209	224	236	253
EER			2.57	2.55	2.53	2.52	2.58	2.55	2.55	2.55	2.56	2.58
ESEER			4.5	4.46	4.43	4.4	4.59	4.61	4.61	4.62	4.63	4.67
КОМПРЕССОР												
Тип компрессоров			SCROLL									
Количество компрессоров		ШТ	8	8	8	8	10	12	12	12	12	12
Номинальная мощность (С1)		HP	50	55	55	60	60	75	75	75	75	90
Номинальная мощность (С2)		HP	50	55	55	60	60	75	75	75	90	90
Номинальная мощность (С3)		HP	50	55	60	60	75	75	75	90	90	90
Номинальная мощность (С4)		HP	50	55	60	60	75	75	90	90	90	92
Кол-во ступеней регулирования		ШТ	8	8	8	8	10	12	12	12	12	12
Заправка маслом (С1)		Л	10	12	12	11	11	20	20	20	20	17
Заправка маслом (С2)		Л	10	12	12	11	11	20	20	20	17	17
Заправка маслом (С3)		л	10	12	11	11	20	20	20	17	17	17
Заправка маслом (С4)		Л	10	12	11	11	20	20	17	17	17	17
Кол-во холодильных контуров		ШТ	4	4	4	4	4	4	4	4	4	4
ИСПАРИТЕЛЬ												
Type of internal exchanger	4		S&T									
No. of internal exchangers		ШТ	1	1	1	1	1	1	1	1	1	1
Water flow rate (Internal Exchanger)		л/с	23.6	25.6	27.5	29.4	31.8	34.3	36.4	39.1	41.2	44.2
internal exchanger pressure drop		кПа	55	66	50	57	62	71	55	63	54	61
Water content		л	125	114	222	222	207	207	184	184	225	225
БЛОК ВЕНТИЛЯТОРОВ												
Тип вентиляторов	5		AX									
Количество вентиляторов		ШТ	8	10	10	10	12	12	13	14	15	16
Номинальный расход воздуха		л/с	36432	42251	42251	42251	49942	49942	55926	59010	64571	67655
ПОДКЛЮЧЕНИЕ												
Фитинги на трубопроводы			168.3	168.3	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1
УРОВЕНИ ШУМА				·		·			·			
Уров. звукового давления (10 м)		дБ(А)	58	59	59	59	59	60	61	61	61	62

⁽¹⁾ Данные приведены для следующих условий : температура воды в испарителе = $12/7^{\circ}$ C

Акустическая конфигурация: Особомалошуная (EN)

РАБОЧИЙ ДИАПАЗОН (ОХЛАЖДЕНИЕ)

Размер			200H	220H	230H	240H	270J	300L	315L	330L	345L	360L
НАРУЖНИЙ ТЕПЛООБМЕННИК (КОН	ІДЕНСАТО	P)	1	1					1	1		
Максим. температура на входе	1	°C	44	44	43	43	44	44	44	44	44	44
Максим. температура на входе	2	°C	46	46	45	45	46	46	46	46	46	46
Миним. температура на входе	4	°C	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
Миним. температура на входе	5	°C	-7	-7	-7	-7	-7	-7	-7	-7	-7	-7
Миним. температура на входе	6	°C	2	2	2	2	2	2	2	2	2	2
Миним. температура на входе	7	°C	11	11	11	11	11	11	11	11	11	11
ВНУТРЕННИЙ ТЕПЛООБМЕННИК (И	СПАРИТЕ	ПЬ)			ļ.	ļ.	ļ.	ļ.			ļ.	ļ.
Макс.температура воды на входе		°C	23	23	23	23	23	23	23	23	23	23
Мин.температура воды на выходе	8	°C	5	5	5	5	5	5	5	5	5	5
Мин.температура воды на выходе	9	°C	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8

Данные приведены для следующих условий :

температура воды в испарителе = 12/7°C

разница между температурой на входе-выходе испарителя = 5°C Предупреждение: неподвижное состояние воздуха рассматривается как отсутствие

воздушных потоков, направленных в сторону блока. Слабый ветер может вызвать прохождение воздуха через теплообменник, что приводит к сокращению рабочего диапазона (см. рабочий диапазон при скорости воздухат 0,5 м/с и 1 м/с). Примечание: в любом случае чиллер не должен подвергаться воздействию температур

ниже -10°C при работе, транспортировке или хранении.
ВНИМАНИЕ В СЛУЧАЕ НАЛИЧИЯ СИЛЬНЫХ ВЕТРОВ, НЕОБХОДИМО ИСПОЛЬЗОВАТЬ ВЕТРОЗАЩИТНЫЕ ЭКРАНЫ.

(1) Максимальная температура воздуха на входе - блок при полной нагрузке

(2) Максимальная температура воздуха на входе - блок при полной нагрузке со стандартным ограничительным устройством

Для определения шумов в данных рабочих условиях, смотрите данные для версии SC

(3) Максимальная температура воздуха на входе - блок с регулированием производительности и стандартным ограничительным устройством

(4) Мин. температура воздуха на входе - блок при полной нагрузке и неподвижном воздухе (5) Мин. температура воздуха на входе - блок при частичной нагрузке и неподвижном воздухе (6) Мин. температура воздуха на входе - блок при частичной нагрузке и скорости ветра 0.5 м/с. (7) Мин. температура воздуха на входе - блок при частичной нагрузке и скорости ветра 1 м/с. (8) стандартный блок

температура окружающего воздуха 35°C (9) В = Низкотемпературный блок температура окружающего воздуха 35°C смесь вода-этиленгликоль 40%

температура окружающего воздуха 35°C (2) В соответствии с EUROVENT, величина Полной потребляемой мощности

не включает в себя мощность циркуляционных насосов (3) Температура воды в рекуператоре =40/45°C

⁽⁴⁾ S&T = Кожухотрубный испаритель (5) AX = осевой вентилятор

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Размер			200H	220H	230H	240H	270J	300L	315L	330L	345L	360L
F.L.A СИЛА ТОКА ПРИ ПОЛНОЙ НАГРУЗ	KE,	МАКС	имальн	о допус	тимой в	ПРОЦЕС	СЕ ЭКСПЈ	ТУАТАЦИ	И	•		•
F.L.A Общий		Α	425	478	492	505	589	665	689	713	737	761
F.L.I ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ ПРИ ПОЛНОЙ НАГРУЗКЕ, МАКСИМАЛЬНО ДОПУСТИМОЙ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ												
F.L.I Общий	кВт	257	281	294	307	344	378	399	420	441	462	
М.І.С МАКСИМАЛЬНЫЙ ПУСКОВОЙ ТОК												
.І.С Величина А			702	755	769	782	866	874	966	990	1014	1038

Максимальный дисбаланс фаз 2 % Электрическая сеть: 400/3/50 Гц +/-6%

ПОПРАВОЧНЫЕ КОЭФФИЦИЕНТЫ ПРИ РАБОТЕ НА РАСТВОРЕ ЭТИЛЕНГЛИКОЛЯ

% весовое содержание этиленгликоля		5%	10%	15%	20%	25%	30%	35%	40%
Температура замерзания	°C	-2.0	-3.9	-6.5	-8.9	-11.8	-15.6	-19.0	-23.4
Безопасная температура	°C	3.0	1.0	-1.0	-4.0	-6.0	-10.0	-14.0	-19.0
Коэффициент холодильной мощности	Nr	0.995	0.990	0.985	0.981	0.977	0.974	0.971	0.968
Коэффициент потребления компрессора	Nr	0.997	0.993	0.990	0.988	0.986	0.984	0.982	0.981
Коэффициент расхода через испаритель	Nr	1.003	1.010	1.020	1.033	1.050	1.072	1.095	1.124
Коэффициент перепада давления на испарителе	Nr	1.029	1.060	1.090	1.118	1.149	1.182	1.211	1.243

Приведенные выше поправочные коэффициенты относятся к раствору вода-гликоль, который применяется для предотвращения замерзания жидкости, при остановке системы на зиму

ПОПРАВОЧНЫЙ КОЭФФИЦИЕНТ НА ЗАГРЯЗНЕНИЕ

	ВНУТРЕННИЙ Т	ЕПЛООБМЕННИК
m² °C/W	F1	FK1
0.44 x 10^(-4)	1.00	1.00
0.88 x 10^(-4)	0.97	0.99
1.76 x 10^(-4)	0.94	0.98

F1 = Поправочный коэффициент холодильной мощности

FK1 = Поправочный коэффициент потребления компрессора

УСТАНОВКИ ПРЕДОХРАНИТЕЛЬНЫХ И РЕГУЛИРУЮЩИХ УСТРОЙСТВ

		ОТКРЫТО	ЗАКРЫТО	ВЕЛИЧИНА
Реле высокого давлени	кПа	4050	3300	-
Реле низкого давления	кПа	450	600	-
Реле низкого давления (низкотемпературный)	бар	200	350	-
Реле защиты от замерзания	°C	3.0	5.5	-
Предохранитель защиты по высокому давлению	кПа	-	-	4500
Предохранитель защиты по низкому давлению	кПа	-	-	3000
Максимальное кол-во пусков компрессора в час	ШТ	-	-	10
Защитное термореле на линии нагнетания	°C	-	-	120

РАБОЧИЙ ДИАПАЗОН ТЕПЛООБМЕННИКА

		ВНУТРЕННИЙ ТЕПЛООБМЕННИК	
	DPr (S - B)	DPw
	κľ	Па	кПа
CLIVET (C)	4500	4500	2500
PED (CE)	4500	4500	2500

DPr = Максимальное рабочее давление на стороне хладагента DPw = Максимальное рабочее давление на стороне воды для получения сертификатов обращайтесь в наш офис продаж

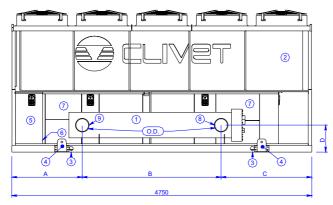
АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ: ОСОБОМАЛОШУМНАЯ (EN)

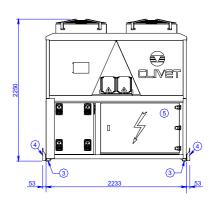
ХАРАКТЕРИСТИКИ РЕЖИМА ОХЛАЖДЕНИЯ

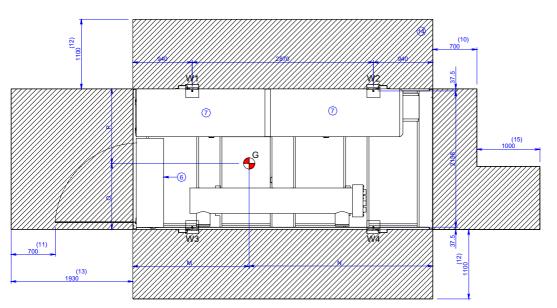
					TE	МПЕРАТ	ГУРА ВО	ЗДУХА Н	ІА ВХОД	Е КОНДІ	EHCATO	PA (°C)			
Размер	To (°C)	2	5	3	0	3	2	3	5	3	8	4	0	4	3
	. ,	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	525.0	148.8	496.9	163.0	485.6	168.9	468.6	177.7	451.5	186.6	440.1	192.6	422.9	201.8
	6	537.0	150.8	509.1	164.8	497.7	170.6	480.4	179.5	462.9	188.7	451.0	195.0	433.1	204.7
200H	7	550.7	152.6	522.6	166.4	511.1	172.2	493.5	181.2	475.5	190.5	463.3	197.0	444.7	206.9
20011	8	566.0	154.2	537.5	167.9	525.7	173.7	507.7	182.6	489.3	192.0	476.8	198.4	457.7	208.4
	9	583.1	155.6	553.7	169.3	541.7	175.0	523.2	183.8	504.4	193.1	491.6	199.4	472.1	209.2
	10	601.8	156.8	571.3	170.5	558.9	176.1	539.9	184.9	520.7	193.8	507.7	200.0	488.0	209.4
	5	554.7	161.5	525.1	177.2	513.4	183.6	495.8	193.3	478.3	203.1	466.6	209.6	449.2	219.6
	6	576.4	163.6	546.8	179.0	534.7	185.4	516.3	195.1	497.6	205.0	485.0	211.7	465.8	222.1
220H	7	596.3	165.8	566.5	180.9	554.1	187.1	535.0	196.8	515.3	206.8	501.8	213.6	481.1	224.1
22011	8	614.2	167.9	584.1	182.7	571.4	188.9	551.8	198.5	531.3	208.4	517.1	215.2	495.3	225.6
	9	630.1	169.9	599.7	184.6	586.8	190.7	566.6	200.1	545.5	209.9	530.9	216.5	508.2	226.8
	10	644.0	171.9	613.2	186.5	600.1	192.5	579.6	201.7	558.0	211.2	543.1	217.6	519.9	227.5
	5	597.5	176.7	567.9	192.8	555.8	199.4	537.2	209.4	518.3	219.6	505.4	226.4	485.8	236.9
	6	621.0	179.7	589.6	195.6	576.7	202.1	557.1	212.1	537.0	222.3	523.4	229.3	502.6	239.9
230H	7	642.2	182.4	609.5	198.0	596.0	204.5	575.5	214.4	554.5	224.6	540.2	231.6	518.5	242.3
23011	8	661.2	184.6	627.5	200.0	613.7	206.4	592.5	216.3	570.8	226.5	556.1	233.4	533.6	244.1
	9	677.9	186.5	643.8	201.7	629.7	208.0	608.1	217.7	585.9	227.8	570.8	234.7	547.7	245.3
	10	692.3	188.0	658.2	203.0	644.1	209.2	622.3	218.8	599.8	228.7	584.5	235.4		
	5	640.0	190.9	607.5	208.0	594.4	214.9	574.8	225.3	555.0	236.0	541.7	243.1	521.8	253.9
	6	663.6	195.1	630.6	211.5	616.9	218.3	595.9	228.8	574.2	239.7	559.4	247.1	536.7	258.5
240H	7	685.3	198.4	651.8	214.3	637.6	221.0	615.5	231.6	592.4	242.6	576.4	250.2	551.7	262.0
24011	8	705.1	200.8	671.0	216.4	656.4	223.1	633.6	233.6	609.6	244.7	592.9	252.3	566.9	264.3
	9	723.1	202.3	688.3	217.9	673.5	224.6	650.2	235.0	625.8	246.0	608.8	253.6	582.4	265.4
	10	739.2	202.9	703.7	218.7	688.7	225.3	665.4	235.7	641.0	246.4	624.1	253.9		
	5	697.1	201.8	662.3	219.6	647.5	227.1	624.5	238.8	600.4	251.0	583.7	259.4	557.7	272.4
	6	720.4	204.3	685.0	221.6	669.9	229.0	646.1	240.6	621.0	252.8	603.5	261.2	576.3	274.4
270J	7	741.1	206.6	704.9	223.5	689.3	230.8	664.7	242.4	638.7	254.6	620.6	263.1	592.1	276.5
2703	8	759.2	208.5	722.0	225.3	705.9	232.6	680.5	244.2	653.6	256.5	634.8	265.1	605.3	278.7
	9	774.7	210.2	736.3	227.0	719.7	234.3	693.4	246.0	665.6	258.5	646.2	267.3	615.8	281.1
	10	787.6	211.5	747.7	228.6	730.5	236.0	703.5	247.9	674.8	260.6	654.8	269.5	623.6	283.6
	5	762.4	220.6	722.8	240.2	705.8	248.5	679.1	261.6	650.9	275.3	631.2	284.9	600.5	299.8
	6	788.9	223.6	747.1	242.9	729.3	251.2	701.4	264.2	672.2	277.8	652.0	287.3	620.5	302.1
300L	7	811.8	226.3	768.8	245.3	750.3	253.5	721.3	266.5	690.8	280.2	669.5	289.9	636.4	305.0
300L	8	831.2	228.7	787.9	247.2	769.0	255.3	738.9	268.4	706.6	282.5	684.0	292.5	648.2	308.3
	9	846.9	230.8	804.6	248.6	785.3	256.7	754.0	270.1	719.7	284.7	695.2	295.2	656.0	312.1
	10	859.1	232.5	818.6	249.6	799.2	257.7	766.7	271.4	730.1	286.8	703.3	298.1	659.8	316.3
	5	803.7	234.2	763.2	254.5	746.3	263.0	720.2	276.3	693.1	290.0	674.6	299.5	646.0	314.2
	6	827.6	236.9	785.5	257.5	768.0	266.1	741.1	279.4	713.3	293.1	694.4	302.4	665.3	316.8
315L	7	850.6	239.5	807.0	260.3	789.0	268.8	761.2	282.1	732.6	295.7	713.0	305.0	683.1	319.3
3 IOL	8	872.9	242.1	828.0	262.6	809.3	271.2	780.5	284.4	750.8	298.0	730.5	307.3	699.3	321.7
	9	894.3	244.6	848.2	264.7	828.9	273.1	799.1	286.2	768.1	299.9	746.9	309.3	714.1	323.8
	10	915.0	247.1	867.8	266.4	847.9	274.7	816.8	287.7	784.4	301.4	762.0	311.0	727.3	325.8

kWf = Холодильная мощность, кВт kWe = Потребление компрессора, кВт To = Температура воды на выходе испарителя° C DT = Разность температур на входе и выходе испарителя = 5°C

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ: ОСОБОМАЛОШУМНАЯ (EN)

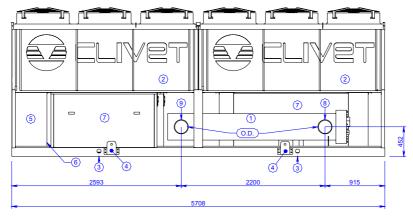

ХАРАКТЕРИСТИКИ РЕЖИМА ОХЛАЖДЕНИЯ

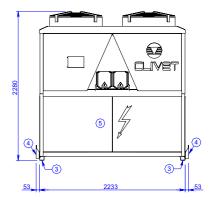

					TE	МПЕРАТ	ГУРА ВО	ЗДУХА Н	ІА ВХОД	Е КОНДІ	EHCATO	PA (°C)			
Размер	To (°C)	2	25	3	0	3	2	3	35	3	8	4	.0	4	3
	, ,	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe	kWf	kWe
	5	862.0	252.0	820.3	273.4	802.5	282.5	774.7	296.7	745.5	311.5	725.3	321.9	693.8	337.9
	6	887.0	254.8	843.5	276.5	825.2	285.6	796.9	299.8	767.4	314.6	747.1	324.8	715.7	340.5
330L	7	911.6	257.6	866.6	279.3	847.8	288.4	818.6	302.6	788.3	317.3	767.4	327.5	735.3	343.2
330L	8	935.7	260.4	889.5	281.8	870.0	290.9	839.8	305.0	808.2	319.8	786.5	330.0	752.8	345.9
	9	959.3	263.2	912.3	284.1	892.1	293.0	860.5	307.1	827.2	322.0	804.1	332.3	768.0	348.5
	10	982.5	265.9	934.8	286.0	914.0	294.8	880.8	308.8	845.3	323.9	820.4	334.4	781.1	351.1
	5	898.7	263.2	852.8	286.5	834.4	296.1	806.7	310.8	778.9	325.8	760.4	336.1	732.4	351.7
	6	931.3	267.1	883.9	290.8	864.9	300.3	836.5	314.8	808.1	329.4	789.1	339.2	760.7	354.1
345L	7	959.5	270.4	910.9	294.0	891.4	303.5	862.1	317.8	832.8	332.2	813.2	341.9	783.8	356.4
343L	8	983.3	273.0	933.9	296.2	913.9	305.6	883.6	319.9	853.1	334.3	832.6	344.0	801.6	358.7
	9	1003	275.1	952.7	297.4	932.3	306.7	901.0	320.9	869.0	335.6	847.3	345.6	814.1	360.9
	10	1018	276.5	967.5	297.7	946.6	306.8	914.1	321.1	880.4	336.2	857.3	346.7	821.5	363.1
	5	959.4	281.3	912.1	305.3	892.8	315.4	863.5	331.0	833.7	347.2	813.5	358.4	782.9	375.5
	6	994.4	285.3	946.4	309.4	926.7	319.5	896.7	334.9	866.0	350.8	845.2	361.6	813.4	378.3
360L	7	1025	288.7	975.9	312.7	955.7	322.7	924.8	338.0	893.0	353.7	871.4	364.4	838.2	380.9
300L	8	1050	291.6	1001	315.3	979.7	325.1	947.7	340.3	914.7	356.1	892.0	366.8	857.2	383.4
	9	1072	293.8	1020	317.0	998.8	326.7	965.6	342.0	931.0	357.8	907.2	368.8	870.5	385.8
	10	1088	295.5	1035	317.9	1013	327.6	978.3	342.8	942.0	359.0	916.9	370.3	878.0	388.0

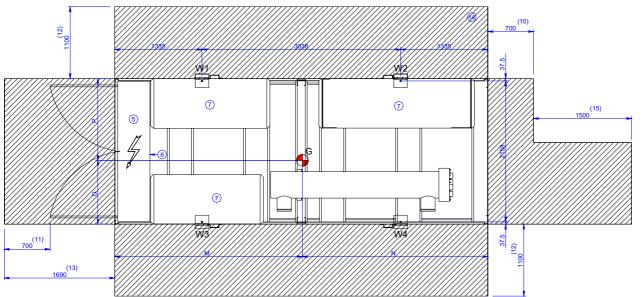

kWf = Холодильная мощность, кВт kWe = Потребление компрессора, кВт To = Температура воды на выходе испарителя° C DT = Разность температур на входе и выходе испарителя = 5°C

ЧЕРТЕЖ В МАСШТАБЕ

ГАБАРИТНЫЕ РАЗМЕРЫ: WSAT-XSC 200H-220H-230H-240H


- (1) ВНУТРЕННИЙ ТЕПЛООБМЕННИК (ИСПАРИТЕЛЬ)
 (2) ВНЕШНИЙ ТЕПЛООБМЕННИК (КОНДЕНСАТОР)
 (3) ОТВЕРСТИЯ ДЛЯ ПОДЪЕМА БЛОКА
 (4) ПОДЪЕМНЫЕ ПЕТЛИ (ЕСЛИ НЕОБХОДИМО МОЖНО УДАЛИТЬ ПОСЛЕ МОНТАЖА БЛОКА)
 (5) ЭЛЕКТРИЧЕСКАЯ ПАНЕЛЬ
 (6) СИЛОВОЙ ВВОД
 (7) ЗВУКОИЗОЛЯЦИОННЫЙ КОЖУХ (ТОЛЬКО ДЛЯ СООТВЕТСТВУЮЩИХ ВЕРСИЙ)
 (8) ВХОД ВОДЫ ВО ВНУТРЕННИЙ ТЕПЛООБМЕННИК
 (9) ВЫХОД ВОДЫ ИЗ ВНУТРЕННИЙ ТЕПЛООБМЕННИКА
 (10) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА
 (11) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА ПРИ ОТКРЫТОЙ ДВЕРЦЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (12) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ НОРМАЛЬНОЙ ЦИРКУЛЯЦИИ ВОЗДУХА ЧЕРЕЗ ТЕПЛООБМЕННИК КОНДЕНСАТОРА
 (13) МИНИМАЛЬНЫЕ РАЗМЕРЫ НА СТОРОНЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
- (12) МИПИМАЛЬНЫЕ РАЗМЕРЫ НА СТОРОНЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (14) СВОБОДНЫЙ ДОСТУП РЕКОМЕНДУЕТСЯ
 (15) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛООБМЕННИКА
 (G) ЦЕНТР ТЯЖЕСТИ

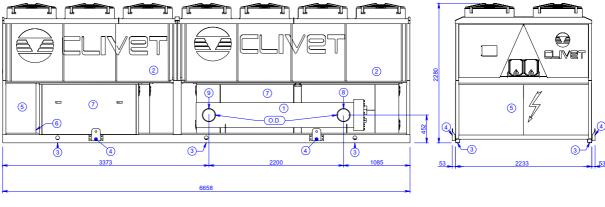

			s	Т			s	С			E	N	
Размер		200H	220H	230H	240H	200H	220H	230H	240H	200H	220H	230H	240H
Α	ММ	1467	1467	1395	1395	1467	1467	1395	1395	1467	1467	1395	1395
В	ММ	2250	2250	2200	2200	2250	2250	2200	2200	2250	2250	2200	2200
С	мм	1033	1033	1155	1155	1033	1033	1155	1155	1033	1033	1155	1155
D	ММ	360	360	430	430	360	360	430	430	360	360	430	430
М	мм	2190	2193	2208	2213	2186	2190	2204	2209	2186	2190	2204	2209
N	ММ	2560	2557	2542	2537	2564	2560	2546	2541	2564	2560	2546	2541
0	ММ	1336	1343	1289	1285	1361	1366	1312	1309	1361	1366	1312	1309
Р	мм	897	890	944	948	872	867	921	924	872	867	921	924
OD	ММ	168.3	168.3	219.1	219.1	168.3	168.3	219.1	219.1	168.3	168.3	219.1	219.1
Длина	мм	4750	4750	4750	4750	4750	4750	4750	4750	4750	4750	4750	4750
Ширина	ММ	2233	2233	2233	2233	2233	2233	2233	2233	2233	2233	2233	2233
Высота	мм	2250	2250	2250	2250	2250	2250	2250	2250	2250	2250	2250	2250
W1	КГ	1146	1216	1260	1260	1203	1272	1316	1316	1203	1272	1316	1316
W2	КГ	995	1059	1094	1098	1044	1108	1143	1147	1044	1108	1143	1147
W3	КГ	949	1000	1086	1089	975	1026	1112	1115	975	1026	1112	1115
W4	КГ	797	843	920	927	816	862	939	946	816	862	939	946
Рабочая масса	КГ	3887	4118	4360	4374	4038	4268	4510	4524	4038	4268	4510	4524
Транспортная масса	КГ	3754	4005	4139	4153	3903	4154	4288	4302	3903	4154	4288	4302

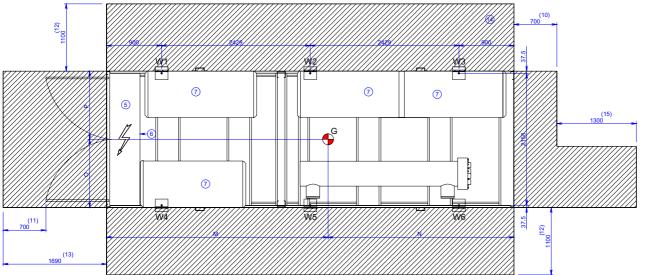

Некоторые аксессуары, исполнения или версии могут изменить окончательную массу агрегата, представленную здесь.

Для предоставления точной информации свяжитесь с нашим техническим департаментом.

ГАБАРИТНЫЕ РАЗМЕРЫ: WSAT-XSC 270J

- (1) ВНУТРЕННИЙ ТЕПЛООБМЕННИК (ИСПАРИТЕЛЬ)
 (2) ВНЕШНИЙ ТЕПЛООБМЕННИК (КОНДЕНСАТОР)
 (3) ОТВЕРСТИЯ ДЛЯ ПОДЪЕМА БЛОКА
 (4) ПОДЪЕМНЫЕ ПЕТЛИ (ЕСЛИ НЕОБХОДИМО МОЖНО УДАЛИТЬ ПОСЛЕ МОНТАЖА БЛОКА)
 (5) ЭЛЕКТРИЧЕСКАЯ ПАНЕЛЬ


- (5) ЭЛЁКТРИЧЕСКАЯ ПАНЕЛЬ
 (6) СИЛОВОЙ ВВОД
 (7) ЗВУКОИЗОЛЯЦИОННЫЙ КОЖУХ (ТОЛЬКО ДЛЯ СООТВЕТСТВУЮЩИХ ВЕРСИЙ)
 (8) ВХОД ВОДЫ ВО ВНУТРЕННИЙ ТЕПЛООБМЕННИК
 (9) ВЫХОД ВОДЫ ИЗ ВНУТРЕННЕГО ТЕПЛООБМЕННИКА
 (10) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА
 (11) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА ПРИ ОТКРЫТОЙ ДВЕРЦЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (12) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА ПРИ ОТКРЫТОЙ ДВЕРЦЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (13) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ НОРМАЛЬНОЙ ЦИРКУЛЯЦИИ ВОЗДУХА ЧЕРЕЗ ТЕПЛООБМЕННИК КОНДЕНСАТОРА
 (13) МИНИМАЛЬНЫЕ РАЗМЕРЫ НА СТОРОНЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (14) СВОБОДНЫЙ ДОСТУП РЕКОМЕНДУЕТСЯ
 (15) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛООБМЕННИКА
 (G) ЦЕНТР ТЯЖЕСТИ


		ST	sc	EN
Размер		270J	270J	270J
М	ММ	2733	2724	2724
N	ММ	2975	2984	2984
0	ММ	1333	1337	1337
Р	ММ	900	896	896
OD	мм	219.1	219.1	219.1
Длина	ММ	5708	5708	5708
Ширина	ММ	2233	2233	2233
Высота	мм	2280	2280	2280
W1	КГ	1527	1595	1595
W2	кг	1421	1476	1476
W3	КГ	1258	1309	1309
W4	КГ	1152	1190	1190
Рабочая масса	кг	5358	5570	5570
Транспортная масса	КГ	5151	5363	5363

Некоторые аксессуары, исполнения или версии могут изменить окончательную массу агрегата, представленную здесь. Для предоставления точной информации свяжитесь с нашим техническим департаментом.

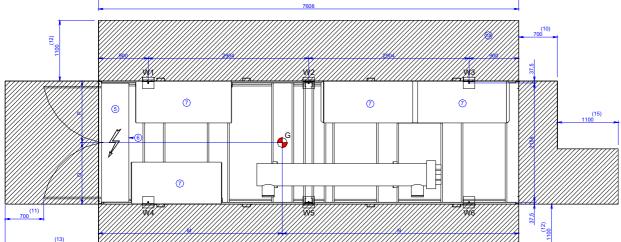
ЧЕРТЕЖ В МАСШТАБЕ

ГАБАРИТНЫЕ РАЗМЕРЫ: WSAT-XSC 300L-315L-330L

- (1) ВНУТРЕННИЙ ТЕПЛООБМЕННИК (ИСПАРИТЕЛЬ)
 (2) ВНЕШНИЙ ТЕПЛООБМЕННИК (КОНДЕНСАТОР)
 (3) ОТВЕРСТИЯ ДЛЯ ПОДЪЕМА БЛОКА
 (4) ПОДЪЕМНЫЕ ПЕТЛИ (ЕСЛИ НЕОБХОДИМО МОЖНО УДАЛИТЬ ПОСЛЕ МОНТАЖА БЛОКА)
 (5) ЭЛЕКТРИЧЕСКАЯ ПАНЕЛЬ
 (6) СИЛОВОЙ ВВОД

- (6) СИЛОВОЙ ВВОД
 (7) ЗВУКОИЗОЛЯЦИОННЫЙ КОЖУХ (ТОЛЬКО ДЛЯ СООТВЕТСТВУЮЩИХ ВЕРСИЙ)
 (8) ВХОД ВОДЫ ВО ВНУТРЕННИЙ ТЕПЛООБМЕННИК
 (9) ВЫХОД ВОДЫ ИЗ ВНУТРЕННЕГО ТЕПЛООБМЕННИКА
 (10) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА
 (11) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА ПРИ ОТКРЫТОЙ ДВЕРЦЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (12) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА ПРИ ОТКРЫТОЙ ДВЕРЦЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (13) МИНИМАЛЬНЫЕ РАЗМЕРЫ НА СТОРООНЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (14) СВОБОДНЫЙ ДОСТУП РЕКОМЕНДУЕТСЯ
 (15) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛООБМЕННИКА
 (6) ЦЕНТР ТЯЖЕСТИ

- (G) ЦЕНТР ТЯЖЕСТИ

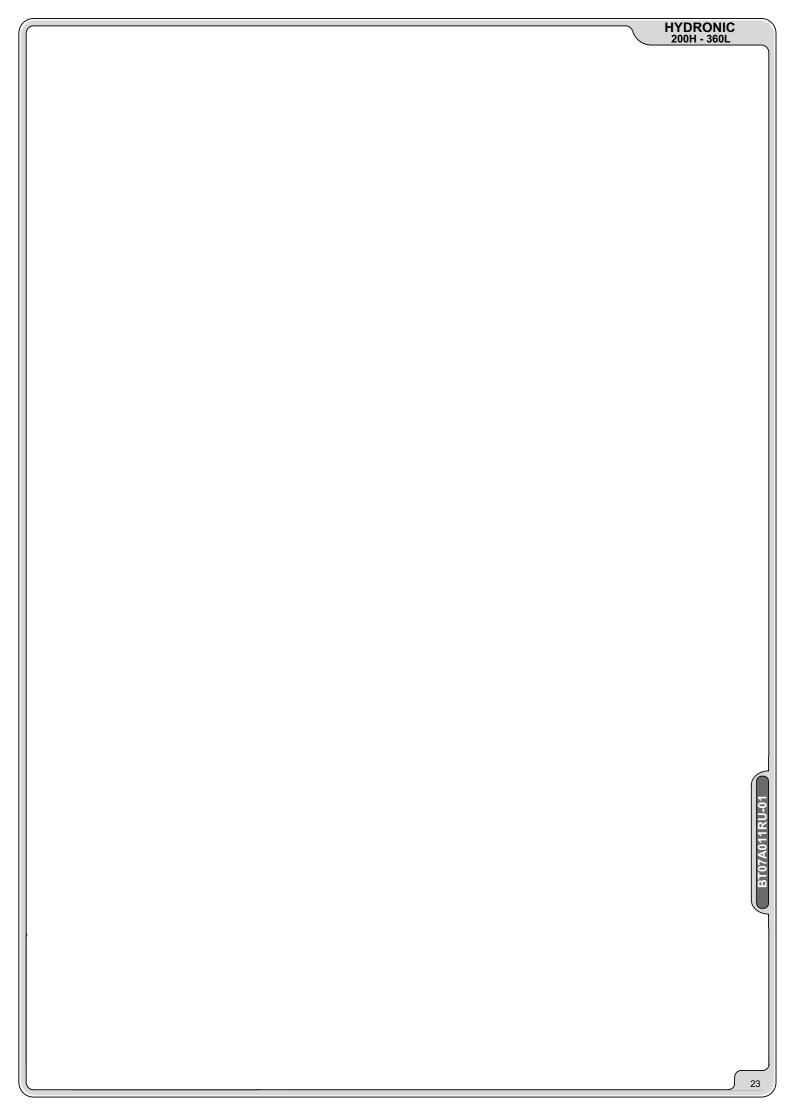

	ST			sc			EN			
Размер		300L	315L	330L	300L	315L	330L	300L	315L	330L
М	ММ	3246	3248	3246	3236	3237	3236	3236	3237	3236
N	мм	3412	3410	3412	3422	3421	3422	3422	3421	3422
0	мм	1217	1208	1205	1228	1220	1217	1228	1220	1217
Р	мм	1016	1025	1028	1005	1013	1016	1005	1013	1016
OD	мм	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1	219.1
Длина	мм	6658	6658	6658	6658	6658	6658	6658	6658	6658
Ширина	мм	2233	2233	2233	2233	2233	2233	2233	2233	2233
Высота	мм	2280	2280	2280	2280	2280	2280	2280	2280	2280
W1	КГ	963	966	974	1020	1024	1031	1020	1024	1031
W2	КГ	1341	1354	1351	1408	1422	1419	1408	1422	1419
W3	КГ	917	916	920	956	954	959	956	954	959
W4	КГ	838	849	861	869	880	892	869	880	892
W5	КГ	1166	1190	1195	1199	1223	1227	1199	1223	1227
W6	КГ	798	805	813	814	821	829	814	821	829
Рабочая масса	КГ	6023	6080	6114	6266	6324	6357	6266	6324	6357
Транспортная масса	КГ	5816	5895	5929	6060	6139	6173	6060	6139	6173

Некоторые аксессуары, исполнения или версии могут изменить окончательную массу агрегата, представленную здесь Для предоставления точной информации свяжитесь с нашим техническим департаментом.

3

(5)

-3



- (1) ВНУТРЕННИЙ ТЕПЛООБМЕННИК (ИСПАРИТЕЛЬ) (2) ВНЕШНИЙ ТЕПЛООБМЕННИК (КОНДЕНСАТОР) (3) ОТВЕРСТИЯ ДЛЯ ПОДЪЕМА БЛОКА (4) ПОДЪЕМНЫЕ ПЕТЛИ ГЕСЛИ НЕОБХОДИМО МОЖНО УДАЛИТЬ ПОСЛЕ МОНТАЖА БЛОКА)

- (4) ПОДЪЕМНЫЕ ПЕТЛИ (ЕСЛИ НЕОБХОДИМО МОЖНО УДАЛИТЬ ПОСЛЕ МОНТАЖА БЛОКА)
 (5) ЭЛЕКТРИЧЕСКАЯ ПАНЕЛЬ
 (6) СИЛОВОЙ ВВОД
 (7) ЗВУКОИЗОПЯЦИОННЫЙ КОЖУХ (ТОЛЬКО ДЛЯ СООТВЕТСТВУЮЩИХ ВЕРСИЙ)
 (8) ВХОД ВОДЫ ВО ВНУТРЕННИЙ ТЕПЛООБМЕННИК
 (9) ВЫХОД ВОДЫ ИЗ ВНУТРЕННЕГО ТЕПЛООБМЕННИКА
 (10) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА
 (11) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ СВОБОДНОГО ДОСТУПА ПРИ ОТКРЫТОЙ ДВЕРЦЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (12) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ НОРМАЛЬНОЙ ЦИРКУЛЯЦИИ ВОЗДУХА ЧЕРЕЗ ТЕПЛООБМЕННИК КОНДЕНСАТОРА
 (13) МИНИМАЛЬНЫЕ РАЗМЕРЫ НА СТОРОНЕ ЭЛЕКТРИЧЕСКОЙ ПАНЕЛИ
 (14) СВОБОДНЫЙ ДОСТУП РЕКОМЕНДУЕТСЯ
 (15) МИНИМАЛЬНЫЕ РАЗМЕРЫ ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛООБМЕННИКА
 (G) ЦЕНТР ТЯЖЕСТИ

		ST		SC		EN	
Размер		345L	360L	345L	360L	345L	360L
M	ММ	3657	3667	3648	3658	3648	3658
N	ММ	3951	3941	3960	3950	3960	3950
0	ММ	1193	1189	1205	1201	1205	1201
Р	ММ	1040	1044	1028	1032	1028	1032
OD	ММ	219.1	219.1	219.1	219.1	219.1	219.1
Длина	ММ	7608	7608	7608	7608	7608	7608
Ширина	ММ	2233	2233	2233	2233	2233	2233
Высота	ММ	2280	2280	2280	2280	2280	2280
W1	КГ	996	996	1055	1055	1055	1055
W2	кг	1553	1564	1613	1623	1613	1623
W3	кг	863	873	904	914	904	914
W4	кг	904	909	937	942	937	942
W5	кг	1411	1428	1433	1450	1433	1450
W6	кг	784	797	803	816	803	816
Рабочая масса	КГ	6511	6567	6745	6800	6745	6800
Транспортная масса	КГ	6286	6341	6520	6575	6520	6575

Некоторые аксессуары, исполнения или версии могут изменить окончательную массу агрегата, представленную здесь. Для предоставления точной информации свяжитесь с нашим техническим департаментом.

HYDRONIC 200H - 360L CLIVET ESPAÑA S.A. (Madrid) SPAIN Tel. + 34 91 6658280 Fax + 34 91 6657806 info@clivet.es CLIVET UK LTD Fareham (Hampshire) U.K. Tel. + 44 (0) 1489 572238 Fax + 44 (0) 1489 573033 info@clivet-uk.co.uk CLIVET NEDERLAND B.V. Amersfoort - Netherlands Tel. + 31 (0) 33 7503420 Fax + 31 (0) 33 7503424 info@clivet.nl

CLIVET SPA Feltre (BL) ITALY Tel. + 39 0439 3131 Fax + 39 0439 313300 info@clivet.it

CLIVET TFA (PVT) LTD Bangalore - INDIA Tel. + 91 80 25351617 Fax + 91 80 25351392 sales@clivettfa.com