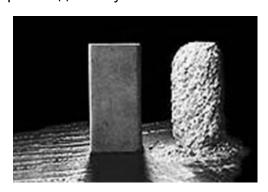
Инжиниринговый центр «Стройхимкомпозит»

Казанский государственный архитектурно-строительный университет



СУХАЯ СМЕСЬ ДЛЯ НЕАВТОКЛАВНОГО ПЕНОБЕТОНА

Руководитель - к.т.н., доц. кафедры ТСМИК Красиникова Наталья Михайловна

Актуальность и практическая значимость: Идеологической основой конкурентоспособной технологии пенобетона стал принцип производства строительных материалов из предварительно приготовленных сухих смесей. Их неоспоримыми достоинствами являются высокая точность дозирования и высокая степень гомогенизации компонентов, обеспечивающие стабильность технологических и эксплуатационно-технических свойств материала. Перспективность применения сухих строительных смесей для производства пенобетона в настоящее время обусловлена курсом на малоэтажное строительство (национальные приоритеты России – федеральные программы: «Доступное и комфортное жилье – гражданам России», «Жилище»). Учитывая рассредоточенность сельских поселений на территории России, применение сухих смесей для производства стеновых блоков и монолитных стен домостроения, представляется наиболее целесообразным способом реализации этих проектов. Анализ современного состояния производства сухих строительных смесей у нас и за рубежом показал, что, при всем их разнообразии, смеси для получения пенобетона среди них отсутствуют.

<u>Реализация проекта:</u> Разработан технологический проект производства сухой смеси для пенобетона и стеновых блоков плотностью D400,600. Рассчитаны экономические показатели производства сухой смеси и пенобетона плотностью D400,600.

Производитель	Свойства пенобетона					
	D,	R сж,	λ,	F,	ε,	μ,
	$K\Gamma/M^3$	MΠa	Вт/м К	цикл	$_{MM/M}$	мг/(мчПа
Пенобетон из сухой смеси	400	1.5 -1,7	0,09	35	2,5	0,24
(«KPAC»)	600	2,8 - 3,0	0,12	35	1,7	0,18
Пенобетон (одностадийная тех-я) «СОВБИ»	400	0,5-1,1	0,085	не норм.	не норм.	0,22
Требования ГОСТ для пенобетона	400	0.7 – 1.1	0,1	не норм	не норм	0,23
Требования ГОСТ для газобетона	400	1.5 – 2.1	0,1	не норм	не норм	0,23
Газобетон «КЗССМ» (г. Казань)	400	2,32	0.095	25	1,0	0,23
Газобетон ОАО ЗЯБ (г.Наб.	400	2,24	0.095	25	1,0	0,23
Челны)	600	3,02	0,14	25	0,5	0,17
Газобетон «ВЗСМ ВІКТОМ» (г. Волжск)	400	1,8-2,4	0,095	25	0,5	0,23

Преимущества технологии:

Технические: 1. высокая прочность при сжатии; 2. малая усадка; 3. морозостойкость

Технологические: 1. сокращение производственных переделов

- 2. высокая стабильность состава;
- 3. малая металлоемкость:
- 4. возможность изготовления из одной марки сухой смеси трех марок пенобетона;
- 5. быстрый набор прочности в НВУ

<u>Интелектуальная собственность:</u> Патент на изобретение № 2342347 «Способ приготовления сухого тонкодисперсного пенообразователя и способ приготовления сухой сырьевой смеси для пенобетона с использованием этого пенообразователя», приоритет от 18.01.2007.