

Инжиниринговый центр «Стройхимкомпозит»

Казанский государственный архитектурно-строительный университет

ПОЛИМЕРНАЯ КОМПОЗИТНАЯ АРМАТУРА

Руководитель: - к.т.н. Старовойтова Ирина Анатольевна

<u>Актуальность и практическая значимость:</u> Потребность строительной отрасли в неметаллической арматуре обусловлена рядом обстоятельств: 1. расширение областей применения армированных бетонных конструкций, эксплуатируемых в агрессивных средах; 2. необходимость изготовления электроизолирующих конструкций без дорогостоящих электроизоляторов; 3. разработка высокоэффективных стеновых ограждающих конструкций (в т.ч. с вентилируемым фасадом), где в качестве силовых элементов используются гибкие связи.

<u>Цель проекта:</u> – разработка составов и технологии изготовления наномодифицированных гибридных и эпоксидных связующих и ПКА на их основе.

Введение многослойных УНТ в состав гибридных органо-неорганических и эпоксидных связующих привело к повышению их прочности, адгезии к волокну и теплостойкости, а также улучшило комплекс характеристик ПКА на их основе.

Преимущества ПКА:

- на основе наномодифицированных гибридных связующих более высокая теплостойкость и предельная температура эксплуатация, высокая прочность на срез, более низкая сырьевая стоимость;
- на основе наномодифицированных эпоксидных связующих более высокие физикомеханические показатели, повышенная предельная температура эксплуатации.

Наименование свойства	Тип связующего:				
	Норма по ГОСТ 31938-2012	Промышлен- ные аналоги на ЭС	эпоксидное, мо- дифициро- ванное МУНТ	гибрид- ное	гибридное, моди- фициро-ванное МУНТ
Плотность, кг/см ³	не нормируется	1900-2100	1950	1750	1870
Прочность при растяжении, МПа	не менее 800	850-1200	1200-1300	850-900	1050-1200
Модуль упругости, ГПа	не менее 50	45-52	50-55	53-54	51-53
Прочность при поперечном изгибе, МПа	-	1000-1300	1200-1350	1100- 1200	1280-1400
Прочность при поперечном срезе, МПа	не менее 150	150-250	350-400	310-315	430-450
Предельная температура эксплуатации, ⁰ С	не менее 60	80-100	100-110	выше 200	
Изменение прочности при растяжении после выдержки в щелочи при 60° C, %	не более 25	10-20	5-10	15	15